RECOVERY OF THE CHARGE DENSITY LINEAR CONDUCTOR ON KNOWN POTENTIAL DISTRIBUTION
DOI:
https://doi.org/10.15588/1607-6761-2013-1-10Keywords:
electric potential, the linear charge density, Fredholm integral equation one kind Gauss quadrature formulas, interpolationAbstract
The paper considers the problem of the linear charge density reconstruction in a straight conductor according to the known potential on the surface of a virtual cylinder with an axis which coincides with the conductor. The resulting Fredholm integral equation of one kind is the ill-posed problem. The approximate method of determining the unknown function, which is based on Gauss quadrature formulas and interpolation is proposed. The expressions for the coefficients of the system of linear algebraic equations defining the values of the unknown function at the nodes of Gauss are given. The limits of this method applicability are explored. The numerical results of the problem solution for the case when the cylinder is set in a virtual permanent capacity, the sinusoidal potential and the potential with a linear function of the coordinates are presented. It is shown that the greatest deviation from the predetermined received function is observed near the ends of the cylinder.References
Тумашев Г. Г. Обратные краевые задачи и их приложения / Г. Г. Тумашев, М. Т. Нужин. – Казань, Изд-во Казанск. ун-та, 1965. – 333 с.
Пентегов И. В. Усовершенствование метода Хоу для расчета частичных емкостей системы проводников / И. В. Пентегов, А. Л. Приступа //Електротехніка і електромеханіка. – 2012. – № 1. – С. 57–59.
Павловская М. В. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / М. В. Павловская, А. И. Мамыкин // Электронное пособие по общему курсу физики. Режим доступу:http://physicsleti.narod.ru/fiz.
Корн Г. Справочник по математике для научных работников и инженеров / Г. Корн, Т. Корн. – М. : Наука, 1974. – 832 с.
Манжиров А. Справочник по интегральным уравнениям: Методы решения / А. В. Манжиров, А. Д. Полянин. – М. : Изд-во «Факториал Пресс», 2000. – 384 с.
Бахвалов Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. – М. : Бином. Лаборатория знаний, 2003. – 632 с.
Крылов В. И. Справочная книга по численному интегрированию / В. И. Крылов, Л. Т. Шульгина. – М.:Наука, 1966. – 370 с.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 H. V. Velichko, K. G. Kondratenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.