Modeling of welding arc power supply diagrams in Matlab / Simulink
DOI:
https://doi.org/10.15588/1607-6761-2021-3-1Keywords:
circuit modeling, power supply, analysis, experimental verificationAbstract
Purpose. Creation of virtual blocks and simulation laboratory stands for the study and comprehensive research of the dynamic properties of welding power supplies.
Methodology. Review of literary sources on the subject, simulation modeling of electromagnetic processes in the MATLAB software environment, comparative analysis of obtained and available data.
Findings. The comparative analysis of means of modeling of power sources of a welding arc is executed. One of the main parameters by which the environments were compared is functionality. Among the considered simulators, Simulink of the MATLAB software environment is the most effective one in the considered systems modeling. Using special features, its user can not only simulate, but also analyze the operation of the over time installation.
Mathematical and functional models of welding arc power supplies were built using SimPowerSystems elements and blocks from the Simulink library with the involvement of the MATLAB system itself, which significantly expands the possibilities for such systems modeling. Mathematization of certain processes to some extent shows the level of reliability of the results and the degree of their scientific development. The developed models act as a laboratory, which allows you to set and explore any modes and characteristics.
Numerical experiments and comparative analysis of numerical and field experiments are given. Experimental verification of the obtained results on specific examples showed the relevance of the problem and the correctness of its solution.
Further research is related to the expansion of the range of simulated power sources of the electric arc, a comprehensive study of their dynamic properties and basic characteristics, experimental verification of the developed models, as well as comparative analysis and development of recommendations for model improvement.
Originality. The method of circuit modeling of general-purpose electrical and electronic circuits was further developed by extending it to a new class of objects - the power supply system of electrical installations.
Practical value. Construction of mathematical and functional models of complex systems with the involvement of MATLAB allows to take into account their main features, significantly expands the possibilities for modeling, study and research of power supplies. Based on the proposed approach, simulation laboratory stands of specific power supplies were developed and built, which allow to set and study any modes and characteristics.
References
Il'jashhenko, D.P. (2017). Vlijanie jenergeticheskih parametrov invertornyh istochnikov pitanija na strukturu i svojstva neraz#jomnyh soedinenij pri ruchnoj dugovoj svarke: avtoref. dis. kand. tehn. nauk. Tomsk, FGBUN, 19.
Bolotovskij, Ju.I., Tanazly, G.I. (2006). Nekotorye aspekty modelirovanija sistem silovoj jelektroniki [Some Aspects of Modeling Power Electronics Systems]. Power electronics, 4, 78-83. (in Russian.)
Bolotovskij, Ju.I., Tanazly, G.I. (2010). ORCAD 9.x, ORCAD 10.x. Praktika modelirovanija. M.: SOLON-PRESS, 208.
Volodin, V.Ja. (2008). Sovremennye svarochnye ap-paraty svoimi rukami. SPb.: Nauka i tehnika, 304.
Volovich, G.I. (2005). Modelirovanie odnotaktnyh DC/DC-preobrazovatelej v pakete VisSim [Simulation of single-cycle DC / DC converters in VisSim package]. Modern electronics, 3, 56-61. (in Russian.)
Klinachjov, N.V. (2001). Modelirovanie sistem v programne VisSim. Spravochnaja sistema. Cheljabinsk: JuUrGU, 174.
Volodin, V.Ja. (2014). Prodvinutye istochniki sva-rochnogo toka [Advanced welding current sources]. Power electronics, 4, 82-90. (in Russian.)
Krampit, M.A., Zernin E.A. (2014). Raschjoty jelektronnyh shem istochnikov pitanija dlja svarki v programme LTSpice IV. Aktual'nye problemy sovremennogo mashinostroenija: sbornik Trudov Mezhdunarodnoj nauchno-prakticheskoj konferencii, g. Jugra, 11-12 dekabrja 2014. Tomsk: Izd-vo TPU, 372-376.
Ul'janova, O.V. (2006). Informacionno-izmeritel'naja sistema dlja attestacii istochnikov pitanija dugovoj svarki na osnove parametrov Markovskoj modeli processa plavlenija: avtoref. dis. kand. tehn. Nauk. Volgograd: Volgogradskij gosudarstvennyj tehnicheskij universitet, 17. (in Russian.)
Kazarinov, L.S., Vstavskaja, E.V., Said, Dzh.A. (2017). Issledovanie processov v mnogokanal'nyh stabilizatorah toka svetoizluchajushhih diodov na osnove modelirovanij [Research of processes in multichannel current stabilizers of light-emitting diodes based on simulation]. Energy problems, T.19, 3-4, 168-175. (in Russian.)
Babkov, A.V., Iljuhin, A.V., Kolbasin, A.M., Seleznev, V.S. (2015). Laboratornyj praktikum po kursu «Modelirovanie sistem». M.: MADI, 64.
Karpov, A.V., Kalabanov, S.A., Shagiev, R.I. (2013). Sovremennye programmnye sredstva strukturno-funkcional'nogo i shemotehnicheskogo modelirovanija, Kazan': Kazan. un-t, 36.
Solov'jov, V.A. (2015). Modelirovanie v srede NI Multisim ponizhajushhego impul'snogo reguljatora postojannogo toka [NI Multisim Simulation of a DC Buck Down Regulator]. Almanac of modern science and education, 7(97), 120-125. (in Russian.)
Tatujko, P.S., Vlasov, A.I. (2017). Modelirovanie perehodnyh processov polumostovogo rezonansnogo preobrazovatelja v MATLAB SIMULINK. SAPR i modelirovanie v sovremennoj jelektronike: sb. nauchn. tr. I Mezhdunarodnoj nauchno-prakticheskoj konferencii. Brjansk: BGTU, 37-40.
Kubov, V.I. (2015). Issledovanie shem impul'snyh istochnikov pitanija v SwCAD / Ltspice. K.: MK-PRESS, SPb.: KORONA-VEK, 208.
Negoda, E.N., Taran, A.P., Judaev, P.B. (2014). Sravnitel'nyj analiz istochnikov pitanija svarochnoj dugi. Sb. trudov V Mezhdunarodnoj nauchno-prakticheskoj konferencii. T.1. «Innovacionnye tehnologii i jekonomika v mashinostroenii». Jugra, 62-67.
Volodin, V.Ja. (2011). Sozdajom sovremennye sva-rochnye apparaty. M.: DMK Press, 352.
Hajneman, R. (2008). Vizual'noe modelirovanie jel-ektronnyh shem v PSPICE: Per. s nem. M.:DMK Press, 336.
Amelina, M.A., Amelin, S.A. (2007). Programma shemotehnicheskogo modelirovanija MicroCap 8. M.: Gorjachaja linija – Telekom, 464.
Bardin, V.M., Zemskov, A.V. (2010). Issledovanie dinamicheskih svojstv svarochnogo invertora. http://fetmag.mrsu.ru/2010-2/pdf/WildingInvertor.pdf
Bardin, V.M., Borisov, D.A., Zemskov, A.V. (2012). Dinamika perehodnyh processov v svarochnyh in-vertorah [Dynamics of transient processes in welding inverters. Practical power electronics, 3, 52-55. (in Russian.)
Bardin, V.M., Borisov, D.A. (2009). Modelirovanie perehodnyh processov v svarochnom invertore [Simulation of transient processes in a welding in-verter]. Electrical engineering, 6, 47-49. (in Russian.)
Bardin, V.M., Zemskov, A.V. (2015). Vysokochastotnye invertory dlja svarki na peremennom toke. M.: DMK Press, 144.
Shvajchenko, V.B., Dikij, D.V. (2017). Napіvprovіdnikovij zvarjuval'nij іnvertor potu-zhnіstju 2 kVt z polіpshenoju elektromagnіtnoju sumіsnіstju [Semiconductor welding inverter with a capacity of 2 kW with improved electromagnetic compatibility]. Technology and design, 3(24), 1-19. (in Ukrainian).
Borisov, D.A., Bardin, V.M. (2010). Perehodnye pro-cessy v svarochnom invertore [Transient processes in the welding inverter]. Modern electronics, 2, 52-53. (in Russian.)
Herniter, Mark E. (2006). Multisim. Sovremennaja sistema komp'juternogo modelirovanija i analiza shem jelektronnyh ustrojstv. M.: DMK-press, 488.
Lur'e, M.S., Lur'e, O.M. (2007). Imitacionnoe modelirovanie shem preobrazovatel'noj tehniki. Krasnojarsk: SibGTU, 138.
Kirina, M., Fomina, K. Programma shemotehnicheskogo modelirovanija Multisim. http://ikit.edu.sfu-kras.ru/CP_Electronics/pages/soft/multisim
Gorbunov, A.S. (2020). Issledovanie tranzistornogo invertora naprjazhenija dlja pitanija induktora s magnitoprovodom v programme MATLAB [Investigation of a transistor voltage inverter for powering an inductor with a magnetic core in the MATLAB program]. Scientific and practical research, 2-1 (25), 27-31. (in Russian.)
Krampit, M.A. (2015). Osobennosti shemotehnicheskogo modelirovanija istochnikov pitanija dlja svarki. Obrabotka materialov: sovremennye problemy i puti reshenija: sbornik trudov Vserossijskoj nauchno-prakticheskoj konferencii molodyh uchenyh, aspirantov i studentov, 26-28 nojabrja 2015, g. Jurga. Tomsk: Izd-vo TPU, 165-168.
Bolotov, S.V., Homchenko, A.V., Shul'ga, A.V., Bolotova, E.L. (2020). Informacionno-izmeritel'nyj kompleks dlja issledovanija processov plavlenija i perenosa jelektrodnogo metalla pri dugovoj svarke [Information-measuring complex for studying the processes of melting and transfer of electrode metal in arc welding]. Bulletin of the Bryansk State Tech-nical University, 6 (91), 4-11. (in Russian.)
Dzhendubaev, A.-Z.R., Dzhendubaev, Je.A.-Z. (2016). Modelirovanie svarochnogo invertora v sis-teme MATLAB i ego rasshirenii SimPowerSystems bez ucheta obratnyh svjazej [Simulation of a weld-ing inverter in MATLAB and its SimPowerSystems extension without taking feedbacks into account]. Izvestiya SevKavGGTA, 2, 3-7. (in Russian.)
Saraev, Ju.N., Lunjov, A.G., Kiseljov, A.S. (2018). Kompleks dlja issledovanija processov dugovoj svarki [Complex for research of arc welding process-es]. Automatic welding, 8, 15-24. (in Russian.)
Kazarinov, L.S., Said, Dzh.A. (2017). Modelirovanie stabilizatora toka svetoizluchajushhih diodov v pa-kete VisSim [Simulation of the current stabilizer of light-emitting diodes in the VisSim package]. Bulletin of SUSU. Series "Computer technologies, control, radio electronics". T.17, 1, 146-152. (in Russian.)
German-Galkin, S.G. (2008). Matlab & Simulink. Proektirovanie mehatronnyh sistem na PK. SPb.: Korona-Vek, 368.
Chernyshov, N.G., Chernyshova, T.I. (2005). Mod-elirovanie i analiz shem v Electronics Workbench. Tambov: TGTU, 52.
Muhin, V.F., Erjomin, E.N. (2011). Modelirovanie jelektricheskih shem malomoshhnyh svarochnyh vyprjamitelej [Simulation of electrical circuits of low-power welding rectifiers]. Omsk Scientific Bulletin: Mechanical Engineering and Engineering Science, 3(103), 73-78. (in Russian.)
Miljutin, V.S., Korotkov, V.A. (1999). Istochniki pi-tanija dlja svarki: Uchebnoe posobie. Cheljabinsk: Metallurgija Urala, 368 s.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Евгений Верещаго, Виталий Костюченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.