Modeling of welding arc power supply diagrams in Matlab / Simulink

Authors

  • Yevhen Vereshchago National University of Shipbuilding, Ukraine
  • Vitalii Kostiuchenko Admiral Makarov National University of Shipbuilding, Ukraine

DOI:

https://doi.org/10.15588/1607-6761-2021-3-1

Keywords:

circuit modeling, power supply, analysis, experimental verification

Abstract

Purpose. Creation of virtual blocks and simulation laboratory stands for the study and comprehensive research of the dynamic properties of welding power supplies.

Methodology. Review of literary sources on the subject, simulation modeling of electromagnetic processes in the MATLAB software environment, comparative analysis of obtained and available data.

Findings. The comparative analysis of means of modeling of power sources of a welding arc is executed. One of the main parameters by which the environments were compared is functionality. Among the considered simulators, Simulink of the MATLAB software environment is the most effective one in the considered systems modeling. Using special features, its user can not only simulate, but also analyze the operation of the over time installation.

Mathematical and functional models of welding arc power supplies were built using SimPowerSystems elements and blocks from the Simulink library with the involvement of the MATLAB system itself, which significantly expands the possibilities for such systems modeling. Mathematization of certain processes to some extent shows the level of reliability of the results and the degree of their scientific development. The developed models act as a laboratory, which allows you to set and explore any modes and characteristics.

Numerical experiments and comparative analysis of numerical and field experiments are given. Experimental verification of the obtained results on specific examples showed the relevance of the problem and the correctness of its solution.

Further research is related to the expansion of the range of simulated power sources of the electric arc, a comprehensive study of their dynamic properties and basic characteristics, experimental verification of the developed models, as well as comparative analysis and development of recommendations for model improvement.

Originality. The method of circuit modeling of general-purpose electrical and electronic circuits was further developed by extending it to a new class of objects - the power supply system of electrical installations.

Practical value. Construction of mathematical and functional models of complex systems with the involvement of MATLAB allows to take into account their main features, significantly expands the possibilities for modeling, study and research of power supplies. Based on the proposed approach, simulation laboratory stands of specific power supplies were developed and built, which allow to set and study any modes and characteristics.

Author Biographies

Yevhen Vereshchago, National University of Shipbuilding

PhD, Associate Professor of the Department of Marine Instrument, Admiral Makarov National University of Shipbuilding, Mykolaiv

Vitalii Kostiuchenko, Admiral Makarov National University of Shipbuilding

PhD, Associate Professor of the Department of Marine Instrument, Admiral Makarov National University of Shipbuilding, Mykolaiv

References

Il'jashhenko, D.P. (2017). Vlijanie jenergeticheskih parametrov invertornyh istochnikov pitanija na strukturu i svojstva neraz#jomnyh soedinenij pri ruchnoj dugovoj svarke: avtoref. dis. kand. tehn. nauk. Tomsk, FGBUN, 19.

Bolotovskij, Ju.I., Tanazly, G.I. (2006). Nekotorye aspekty modelirovanija sistem silovoj jelektroniki [Some Aspects of Modeling Power Electronics Systems]. Power electronics, 4, 78-83. (in Russian.)

Bolotovskij, Ju.I., Tanazly, G.I. (2010). ORCAD 9.x, ORCAD 10.x. Praktika modelirovanija. M.: SOLON-PRESS, 208.

Volodin, V.Ja. (2008). Sovremennye svarochnye ap-paraty svoimi rukami. SPb.: Nauka i tehnika, 304.

Volovich, G.I. (2005). Modelirovanie odnotaktnyh DC/DC-preobrazovatelej v pakete VisSim [Simulation of single-cycle DC / DC converters in VisSim package]. Modern electronics, 3, 56-61. (in Russian.)

Klinachjov, N.V. (2001). Modelirovanie sistem v programne VisSim. Spravochnaja sistema. Cheljabinsk: JuUrGU, 174.

Volodin, V.Ja. (2014). Prodvinutye istochniki sva-rochnogo toka [Advanced welding current sources]. Power electronics, 4, 82-90. (in Russian.)

Krampit, M.A., Zernin E.A. (2014). Raschjoty jelektronnyh shem istochnikov pitanija dlja svarki v programme LTSpice IV. Aktual'nye problemy sovremennogo mashinostroenija: sbornik Trudov Mezhdunarodnoj nauchno-prakticheskoj konferencii, g. Jugra, 11-12 dekabrja 2014. Tomsk: Izd-vo TPU, 372-376.

Ul'janova, O.V. (2006). Informacionno-izmeritel'naja sistema dlja attestacii istochnikov pitanija dugovoj svarki na osnove parametrov Markovskoj modeli processa plavlenija: avtoref. dis. kand. tehn. Nauk. Volgograd: Volgogradskij gosudarstvennyj tehnicheskij universitet, 17. (in Russian.)

Kazarinov, L.S., Vstavskaja, E.V., Said, Dzh.A. (2017). Issledovanie processov v mnogokanal'nyh stabilizatorah toka svetoizluchajushhih diodov na osnove modelirovanij [Research of processes in multichannel current stabilizers of light-emitting diodes based on simulation]. Energy problems, T.19, 3-4, 168-175. (in Russian.)

Babkov, A.V., Iljuhin, A.V., Kolbasin, A.M., Seleznev, V.S. (2015). Laboratornyj praktikum po kursu «Modelirovanie sistem». M.: MADI, 64.

Karpov, A.V., Kalabanov, S.A., Shagiev, R.I. (2013). Sovremennye programmnye sredstva strukturno-funkcional'nogo i shemotehnicheskogo modelirovanija, Kazan': Kazan. un-t, 36.

Solov'jov, V.A. (2015). Modelirovanie v srede NI Multisim ponizhajushhego impul'snogo reguljatora postojannogo toka [NI Multisim Simulation of a DC Buck Down Regulator]. Almanac of modern science and education, 7(97), 120-125. (in Russian.)

Tatujko, P.S., Vlasov, A.I. (2017). Modelirovanie perehodnyh processov polumostovogo rezonansnogo preobrazovatelja v MATLAB SIMULINK. SAPR i modelirovanie v sovremennoj jelektronike: sb. nauchn. tr. I Mezhdunarodnoj nauchno-prakticheskoj konferencii. Brjansk: BGTU, 37-40.

Kubov, V.I. (2015). Issledovanie shem impul'snyh istochnikov pitanija v SwCAD / Ltspice. K.: MK-PRESS, SPb.: KORONA-VEK, 208.

Negoda, E.N., Taran, A.P., Judaev, P.B. (2014). Sravnitel'nyj analiz istochnikov pitanija svarochnoj dugi. Sb. trudov V Mezhdunarodnoj nauchno-prakticheskoj konferencii. T.1. «Innovacionnye tehnologii i jekonomika v mashinostroenii». Jugra, 62-67.

Volodin, V.Ja. (2011). Sozdajom sovremennye sva-rochnye apparaty. M.: DMK Press, 352.

Hajneman, R. (2008). Vizual'noe modelirovanie jel-ektronnyh shem v PSPICE: Per. s nem. M.:DMK Press, 336.

Amelina, M.A., Amelin, S.A. (2007). Programma shemotehnicheskogo modelirovanija MicroCap 8. M.: Gorjachaja linija – Telekom, 464.

Bardin, V.M., Zemskov, A.V. (2010). Issledovanie dinamicheskih svojstv svarochnogo invertora. http://fetmag.mrsu.ru/2010-2/pdf/WildingInvertor.pdf

Bardin, V.M., Borisov, D.A., Zemskov, A.V. (2012). Dinamika perehodnyh processov v svarochnyh in-vertorah [Dynamics of transient processes in welding inverters. Practical power electronics, 3, 52-55. (in Russian.)

Bardin, V.M., Borisov, D.A. (2009). Modelirovanie perehodnyh processov v svarochnom invertore [Simulation of transient processes in a welding in-verter]. Electrical engineering, 6, 47-49. (in Russian.)

Bardin, V.M., Zemskov, A.V. (2015). Vysokochastotnye invertory dlja svarki na peremennom toke. M.: DMK Press, 144.

Shvajchenko, V.B., Dikij, D.V. (2017). Napіvprovіdnikovij zvarjuval'nij іnvertor potu-zhnіstju 2 kVt z polіpshenoju elektromagnіtnoju sumіsnіstju [Semiconductor welding inverter with a capacity of 2 kW with improved electromagnetic compatibility]. Technology and design, 3(24), 1-19. (in Ukrainian).

Borisov, D.A., Bardin, V.M. (2010). Perehodnye pro-cessy v svarochnom invertore [Transient processes in the welding inverter]. Modern electronics, 2, 52-53. (in Russian.)

Herniter, Mark E. (2006). Multisim. Sovremennaja sistema komp'juternogo modelirovanija i analiza shem jelektronnyh ustrojstv. M.: DMK-press, 488.

Lur'e, M.S., Lur'e, O.M. (2007). Imitacionnoe modelirovanie shem preobrazovatel'noj tehniki. Krasnojarsk: SibGTU, 138.

Kirina, M., Fomina, K. Programma shemotehnicheskogo modelirovanija Multisim. http://ikit.edu.sfu-kras.ru/CP_Electronics/pages/soft/multisim

Gorbunov, A.S. (2020). Issledovanie tranzistornogo invertora naprjazhenija dlja pitanija induktora s magnitoprovodom v programme MATLAB [Investigation of a transistor voltage inverter for powering an inductor with a magnetic core in the MATLAB program]. Scientific and practical research, 2-1 (25), 27-31. (in Russian.)

Krampit, M.A. (2015). Osobennosti shemotehnicheskogo modelirovanija istochnikov pitanija dlja svarki. Obrabotka materialov: sovremennye problemy i puti reshenija: sbornik trudov Vserossijskoj nauchno-prakticheskoj konferencii molodyh uchenyh, aspirantov i studentov, 26-28 nojabrja 2015, g. Jurga. Tomsk: Izd-vo TPU, 165-168.

Bolotov, S.V., Homchenko, A.V., Shul'ga, A.V., Bolotova, E.L. (2020). Informacionno-izmeritel'nyj kompleks dlja issledovanija processov plavlenija i perenosa jelektrodnogo metalla pri dugovoj svarke [Information-measuring complex for studying the processes of melting and transfer of electrode metal in arc welding]. Bulletin of the Bryansk State Tech-nical University, 6 (91), 4-11. (in Russian.)

Dzhendubaev, A.-Z.R., Dzhendubaev, Je.A.-Z. (2016). Modelirovanie svarochnogo invertora v sis-teme MATLAB i ego rasshirenii SimPowerSystems bez ucheta obratnyh svjazej [Simulation of a weld-ing inverter in MATLAB and its SimPowerSystems extension without taking feedbacks into account]. Izvestiya SevKavGGTA, 2, 3-7. (in Russian.)

Saraev, Ju.N., Lunjov, A.G., Kiseljov, A.S. (2018). Kompleks dlja issledovanija processov dugovoj svarki [Complex for research of arc welding process-es]. Automatic welding, 8, 15-24. (in Russian.)

Kazarinov, L.S., Said, Dzh.A. (2017). Modelirovanie stabilizatora toka svetoizluchajushhih diodov v pa-kete VisSim [Simulation of the current stabilizer of light-emitting diodes in the VisSim package]. Bulletin of SUSU. Series "Computer technologies, control, radio electronics". T.17, 1, 146-152. (in Russian.)

German-Galkin, S.G. (2008). Matlab & Simulink. Proektirovanie mehatronnyh sistem na PK. SPb.: Korona-Vek, 368.

Chernyshov, N.G., Chernyshova, T.I. (2005). Mod-elirovanie i analiz shem v Electronics Workbench. Tambov: TGTU, 52.

Muhin, V.F., Erjomin, E.N. (2011). Modelirovanie jelektricheskih shem malomoshhnyh svarochnyh vyprjamitelej [Simulation of electrical circuits of low-power welding rectifiers]. Omsk Scientific Bulletin: Mechanical Engineering and Engineering Science, 3(103), 73-78. (in Russian.)

Miljutin, V.S., Korotkov, V.A. (1999). Istochniki pi-tanija dlja svarki: Uchebnoe posobie. Cheljabinsk: Metallurgija Urala, 368 s.

Published

2021-09-30

How to Cite

Vereshchago, Y., & Kostiuchenko, V. (2021). Modeling of welding arc power supply diagrams in Matlab / Simulink. Electrical Engineering and Power Engineering, (3), 8–20. https://doi.org/10.15588/1607-6761-2021-3-1