Gyrator-capacitor method for modeling of electromagnetic processes based on magnetoelectric substitution circuits
DOI:
https://doi.org/10.15588/1607-6761-2020-4-1Keywords:
transient, transformers, magnetoelectric substitution circuits, numerical methods, schematic model, magnetic capacitors, gyratorsAbstract
Purpose. Development of magnetoelectric substitution circuits using gyrator-capacitor models
Methodology. Numerical methods for solving differential equations of state, mathematical apparatus of matrix algebra, computer programming and methods of electrical circuit theory.
Findings. As a result of modification of the known method of calculation of transient electro-magnetic processes on the basis of magnetoelectric substitution circuits, the method using gyrator-capacitor models is developed.
On the basis of the developed method the computer program for calculation of transient process in the single-phase transformer which showed adequacy of a method is made. The universal software complex for modeling magnetoelectric substitution circuits Colo was modified. An example of using a modified Colo software complex to calculate a transients in a three-phase transformer is shown. This example demonstrates additional clarity of compilated magneto-electric substitution circuits and reduction of the computer time modeling.
Originality. Further development of methods for calculating electromagnetic processes based on nonlinear magnetoelectric substitution circuits was carried out. The mathematical model, which is taken as a principle of the universal Colo software complex, was modified by the way of a new element application - a gyrator. It is allaw to achieve the systemic application of the gyratory-capacitor method of magnetoelectric substitution circuits.
Practical value. The proposed modification of the universal software complex Colo allows to reduce the time of model development, preparation of initial data and to reduce the processor time of modeling of complex nonlinear electromagnetic devices.
References
Tikhovod, S.M. (2014). Modifikatsiya magni-toelektriches-kikh skhem zamescheniya elektromag-nitnykh ustrojstv dlya analiza perekhodnykh protsessov. Elektrichestvo. No 2, 53-60. http://elibrary.ru/item.asp?id=2109467
Tikhovod, S.M. (2017). Modelyuvannya perekhdnikh elektro-magntnikh protsesv v trans-formatorakh na osnov magntoelektrichnikh skhem zamschennya: pdruchnik. Zaporzhzhya: ZNTU, 94.
Chakhmakhsazyan, E.A., Barmakov, Yu.N., Golden-berg, A.E. (1974). Mashinnyj analiz integral-nykh skhem. voprosy teorii i programmirovaniya. Mos-cow: Sovetskoe radio, 272.
Chua, L.O. Pen-Min. (1980). Mashinnyj analiz el-ektronnykh skhem: algoritmy i vychislitelnye meto-dy. Moscow, Energiya, 640.
Bakhvalov, N. S., Zhidkov, G. M., Kobelkov, N. P., (2020). Chislennye metody. 9-e izd., elektron, Mos-kva : laboratoriya znanij, 636.
Bansal, R.K. (2018). Fundamentals of numerical methods. Oxford: alpha science international ltd, 574
Tikhovod, S.M. (2008). Sistema kompyuternogo modeli-rovaniya dinamicheskikh protsessov v nelinejnykh magnitoelektricheskikh tsepyakh. Tekhnchna elektrodinamka, No 3, 16-23.
Shakirov, M.A. (2003). Magnitoelektricheskie skhemy zamescheniya katushek induktivnosti i transforma-torov. Elektrichestvo, No 11, 34-45.
Shakirov, M.A. (2005). Analiz neravnomernosti raspre-deleniya magnitnykh nagruzok i poter v trans-formatorakh na osnove magnitoelektricheskikh skhem zamescheniya. Elektrichestvo, No 11, 15-27.
Guadalupe G Gonzalez and Mehrdad Ehsani «Pow-er-Invariant Magnetic System Modeling». Interna-tional Journal of Magnetics and Electromagnetism , 2018. 4 (1). DOI: 10.35840/2631-5068/6512. ISSN 2631-5068
Mathieu Lambert; Jean Mahseredjian; Manuel Martı´nez-Duró; Frédéric Siroi. (2015). «Magnetic Circuits Within Electric Circuits: Critical Review of Existing Methods and New Mutator Implementa-tions». IEEE Transactions on Power Delivery . 30 (6): 2427–2434. DOI : 10.1109 / TPWRD.2015.2391231
Maksvell, D.K. (1968). Stati i rechi. Moscow. Nauka, 312.
Tikhovod, S.M., Tokmakov, I. (2013). Modeliro-vanie perekhodnykh protsessov v elektromagnitnykh ustrojstvakh na osno-ve magnitoelektricheskikh skhem zamescheniya s magnitnymi kondensatorami. Elektrotekhnka ta elektroenergeti-ka, No 1, 5-12.
rezhim dostupu: http://nbuv.gov.ua/j-pdf/etee_2013_1_3.pdf
B.D.H. Tellegen. (1948). The gyrator a new electric network element. Philips Res.Rep. No 3, 81-101.
Tikhovod, S.M., Romanichenko, G.N., Afanaseva, I.O. Raschet induktivnostej obmotok transformato-ra, obuslovlennykh magnitnymi potokami v vozdu-khe. Elektromekhanchn energozbergayuch sistemi. No 3. 149-154.
Anufriev, I. E., Smirnov, A. B., Smirnova, E. N. (2005). Matlab 7. SPb.: bkhv-Peterburg, 1104 s.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.