Gyrator-capacitor method for modeling of electromagnetic processes based on magnetoelectric substitution circuits

Authors

  • A. Podus National University "Zaporizhzhia Polytechnic”, Ukraine
  • D. Patalakh National University "Zaporizhzhia Polytechnic”, Ukraine
  • S. Tykhovod National University "Zaporizhzhia Polytechnic”, Ukraine

DOI:

https://doi.org/10.15588/1607-6761-2020-4-1

Keywords:

transient, transformers, magnetoelectric substitution circuits, numerical methods, schematic model, magnetic capacitors, gyrators

Abstract

Purpose. Development of magnetoelectric substitution circuits using gyrator-capacitor models

Methodology. Numerical methods for solving differential equations of state, mathematical apparatus of matrix algebra, computer programming and methods of electrical circuit theory.

Findings. As a result of modification of the known method of calculation of transient electro-magnetic processes on the basis of magnetoelectric substitution circuits, the method using gyrator-capacitor models is developed.  

On the basis of the developed method the computer program for calculation of transient process in the single-phase transformer which showed adequacy of a method is made. The universal software complex for modeling magnetoelectric substitution circuits Colo was modified. An example of using a modified Colo software complex to calculate a transients  in a three-phase transformer is shown. This example demonstrates additional clarity of compilated  magneto-electric substitution circuits and  reduction of the computer time modeling.

Originality. Further development of methods for calculating electromagnetic processes based on nonlinear magnetoelectric substitution circuits was carried out. The mathematical model, which is taken as a principle of the universal Colo software complex, was modified by the way of  a new element application - a gyrator. It is allaw to achieve the systemic application of the gyratory-capacitor method of magnetoelectric substitution circuits.

Practical value. The proposed modification of the universal software complex Colo allows to reduce the time of model development, preparation of initial data and to reduce the processor time of modeling of complex nonlinear electromagnetic devices.

Author Biographies

A. Podus, National University "Zaporizhzhia Polytechnic”

Student of National University "Zaporizhzhia Polytechnic, Zaporizhzhia

D. Patalakh, National University "Zaporizhzhia Polytechnic”

Postgraduate student of National University " Zaporizhzhia Polytechnic ", Zaporizhzhia

S. Tykhovod, National University "Zaporizhzhia Polytechnic”

Doctor technical sciences, Assoc. Prof., Chief of the department of the Theoretical and general electronics, National University " Zaporizhzhia Polytechnic"

References

Tikhovod, S.M. (2014). Modifikatsiya magni-toelektriches-kikh skhem zamescheniya elektromag-nitnykh ustrojstv dlya analiza perekhodnykh protsessov. Elektrichestvo. No 2, 53-60. http://elibrary.ru/item.asp?id=2109467

Tikhovod, S.M. (2017). Modelyuvannya perekhdnikh elektro-magntnikh protsesv v trans-formatorakh na osnov magntoelektrichnikh skhem zamschennya: pdruchnik. Zaporzhzhya: ZNTU, 94.

Chakhmakhsazyan, E.A., Barmakov, Yu.N., Golden-berg, A.E. (1974). Mashinnyj analiz integral-nykh skhem. voprosy teorii i programmirovaniya. Mos-cow: Sovetskoe radio, 272.

Chua, L.O. Pen-Min. (1980). Mashinnyj analiz el-ektronnykh skhem: algoritmy i vychislitelnye meto-dy. Moscow, Energiya, 640.

Bakhvalov, N. S., Zhidkov, G. M., Kobelkov, N. P., (2020). Chislennye metody. 9-e izd., elektron, Mos-kva : laboratoriya znanij, 636.

Bansal, R.K. (2018). Fundamentals of numerical methods. Oxford: alpha science international ltd, 574

Tikhovod, S.M. (2008). Sistema kompyuternogo modeli-rovaniya dinamicheskikh protsessov v nelinejnykh magnitoelektricheskikh tsepyakh. Tekhnchna elektrodinamka, No 3, 16-23.

Shakirov, M.A. (2003). Magnitoelektricheskie skhemy zamescheniya katushek induktivnosti i transforma-torov. Elektrichestvo, No 11, 34-45.

Shakirov, M.A. (2005). Analiz neravnomernosti raspre-deleniya magnitnykh nagruzok i poter v trans-formatorakh na osnove magnitoelektricheskikh skhem zamescheniya. Elektrichestvo, No 11, 15-27.

Guadalupe G Gonzalez and Mehrdad Ehsani «Pow-er-Invariant Magnetic System Modeling». Interna-tional Journal of Magnetics and Electromagnetism , 2018. 4 (1). DOI: 10.35840/2631-5068/6512. ISSN 2631-5068

Mathieu Lambert; Jean Mahseredjian; Manuel Martı´nez-Duró; Frédéric Siroi. (2015). «Magnetic Circuits Within Electric Circuits: Critical Review of Existing Methods and New Mutator Implementa-tions». IEEE Transactions on Power Delivery . 30 (6): 2427–2434. DOI : 10.1109 / TPWRD.2015.2391231

Maksvell, D.K. (1968). Stati i rechi. Moscow. Nauka, 312.

Tikhovod, S.M., Tokmakov, I. (2013). Modeliro-vanie perekhodnykh protsessov v elektromagnitnykh ustrojstvakh na osno-ve magnitoelektricheskikh skhem zamescheniya s magnitnymi kondensatorami. Elektrotekhnka ta elektroenergeti-ka, No 1, 5-12.

rezhim dostupu: http://nbuv.gov.ua/j-pdf/etee_2013_1_3.pdf

B.D.H. Tellegen. (1948). The gyrator a new electric network element. Philips Res.Rep. No 3, 81-101.

Tikhovod, S.M., Romanichenko, G.N., Afanaseva, I.O. Raschet induktivnostej obmotok transformato-ra, obuslovlennykh magnitnymi potokami v vozdu-khe. Elektromekhanchn energozbergayuch sistemi. No 3. 149-154.

Anufriev, I. E., Smirnov, A. B., Smirnova, E. N. (2005). Matlab 7. SPb.: bkhv-Peterburg, 1104 s.

Published

2020-12-30

How to Cite

Podus, A., Patalakh, D., & Tykhovod, S. (2020). Gyrator-capacitor method for modeling of electromagnetic processes based on magnetoelectric substitution circuits . Electrical Engineering and Power Engineering, (4), 8–17. https://doi.org/10.15588/1607-6761-2020-4-1