DOI: https://doi.org/10.15588/1607-6761-2020-1-1

Investigation of the frequency dependence of the electrical conductivity in PZT piezoceramics

S.P. Lushchin, O.I. Zolotarevskiy

Abstract


Purpose. To investigate the frequency dependence of the electrical conductivity in piezoelectric ceramics based on solid solutions of lead-zirconate titanate oxides.

Methodology. To obtain the frequency dependence of the electrical conductivity in piezoelectric ceramics based on solid solutions of lead-zirconate titanate oxides, we used a technique for measuring the resistance of a sample with electrodes deposited on its opposite faces. Using the obtained resistance value, the value of the electrical conductivity of the sample was calculated at various frequencies.

Findings.  The frequency dependence of the specific electrical conductivity in PZT-22 piezoceramics based on solid solutions of lead-zirconate titanate oxides in the frequency range of 0 < ν < 60 kHz has been obtained by the authors. The specific electrical conductivity in PZT-22 piezoceramics increased over the entire range of frequencies studied. A sharp increase in specific electrical conductivity was observed at frequencies up to 20 kHz. At frequencies of ν > 20 kHz the increase in specific electrical conductivity ceased and at frequencies of ν > 30 kHz its value reached saturation. The maximum value of specific electrical conductivity γ = 0.55 . 10-6 Ohm-1.m-1 was obtained at a frequency of 60 kHz. The frequency dependence of the specific electrical conductivity in PZT-22 piezoceramics in the frequency range of 0 < ν < 60 kHz is analyzed. It was found that the specific electrical conductivity in PZT-22 piezoceramics increases according to a power law in the frequency range of 0 < ν < 10 kHz. The mechanism of changing the electrical conductivity in PZT piezoceramics with increasing frequency of the electric field is discussed. A formula is obtained that satisfactorily describes the experimental dependence of the specific electrical conductivity in PZT-22 piezoceramics on the frequency of an alternating voltage in the frequency range of 0 < ν < 10 kHz and which corresponds to the power law of A. Ioncher. The specific electrical conductivity in the unpolarized PZT-19 piezoceramics increases in the frequency range of 0 < ν < 100 kHz. In the frequency range of 0 < ν < 20 kHz a power law dependence is observed and at frequencies of ν > 20 kHz a power law is violated and the specific electrical conductivity gradually increases without reaching saturation.

Originality. The frequency dependence of the electrical conductivity in PZT-22 piezoceramics in the frequency range of 0 < ν < 60 kHz is studied. It is established that the specific electrical conductivity in PZT-22 piezoceramics increases with increasing frequency of the electric field and in the frequency range of 0 < ν < 10 kHz, the nature of its change corresponds to the power law of A. Ioncher. The mechanism of change in electrical conductivity is due to the hopping conductivity of ions and polarons in a dielectric and is explained by the delay of slow polarization mechanisms. The nature of the dependence of the specific electrical conductivity in PZT-19 piezoelectric ceramics is due to the fact that polarization processes do not make a noticeable contribution to the dispersion of the electrical conductivity of unpolarized piezoceramics and the delay of slow polarization mechanisms is not observed.

Practical value.  When using piezoceramics based on solid solutions of lead-zirconate titanate oxides, it is necessary to take into account the significant dependence of its electrical conductivity on the frequency of an alternating electric field. The research results can be used to study the mechanism of electrical conductivity of piezoceramic materials based on solid solutions of lead-zirconate titanate oxides, which are used in electrical and electronic products under the influence of alternating electric fields of various frequencies.


Keywords


frequency dependence; specific electrical conductivity; piezoceramics; lead-zirconate titanate; electrical conductivity mechanism

References


[1] Golovnin, V.A., Kaplunov, I.A., Malyshkina, O.V. i dr., (2013). Fizicheskie osnovy, metody issledovanija i prak-ticheskoe primenenie p'ezomaterialov. Moscow: Tehnosfera, 272. ISBN: 978-5-94836-352-3.

[2] Glozman, I.A. (1972). P'ezokeramika. M. Jenergija, 288.

[3] Jaffe, B., Kuk, U., Jaffe, G., (1974). P'ezojelektricheskaja keramika. Moscow.: Mir, 288.

[4] Bell, A.J., (2008). Ferroelectrics: The Role of Ceramic Science and Engineering. J. Eur. Ceram. Soc., 28(7), 1307-1317.

[5] Lajns, M., Glas, A., (1981). Segnetojelektriki i rodstvennye materialy. Moscow: Mir, 736.

[6] Smolenskij, G.A., Isupov, V.A., Pasynkov R.E. i dr. Otv. red. G.A. Smolenskij, (1985). Fizika segnetoelektricheskih yavlenij. Leningrad.: Nauka: Leningr. otd.-nie, 396.

[7] Fizika segnetojelektrikov: sovremennyj vzgljad / pod red. K.M. Rabe, Ch.G. Ana, Zh.-M. Triskona; per. s angl., (2011). Moscow: BINOM. Laboratorija znanij, 440.

[8] Trofimov, A.I. P'ezojelektricheskie preobrazovateli staticheskih nagruzok, (1979). Moscow: Mashinostroenie, 95.

[9] Sharapov, V.M., Musienko, E.V., Sharapova, M.P. Pod red. V.M. Sharapova, (2006). P'ezojelektricheskie datchiki. Moscow: Tehnosfera, 632. ISBN 5-94836-100-4.

[10] Androsova, V.G., Bronnikova, E.G., Vasil'eva, A.M. i dr. Pod red. P.E. Kandyby i P.G. Pozdnjakova, (1992). P'ezojelektricheskie rezonatory: Spravochnik M.: Radio i svjaz', 392. ISBN 5-256-00634-7.

[11] Tareev, B.M., (1982). Fizika dielektricheskih materialov, Moscow: Energoizdat, 320.

[12] Poplavko, Yu.M., (1980). Fizika dielektrikov K.: Visha shkola, 400.

[13] Kiselev, V.F., Krylov, O.V., (1979). Elektronnye yavleniya v adsorbcii i katalize na poluprovodnikah i dielektrikah. Moscow: Nauka, 112.

[14] Morozov, M.I., Damjanovic, D. (2010). Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardering and softening. J. of Applied Physics, 107, 3, 034106. DOI: 10.1016/0893-6080(88)90334-6

[15] Azad, Subhash Chandra, Ranjan, R., Singh, N.K., (2016). Study of Dielectric and Transport Properties of Gadolinium (Gd3+) Modified Lead Zirconate Titanate [PZT] Ceramics. Intern. J. of Research and Scientific Innovation, III, XI, 67-69. ISSN 2321-2705.

[16] Osak, Andrzej., (2017). AC low frequency conductivity in PZT PFS ferroelectric ceramics. Technical Transactions, 1, 173-185. DOI: 10.4467/1353737XCT.17.015.6112.

[17] Lejko, A.G., Gladkih, N.D., Nizhin, A.I., Starovojt, Ja.I., (2014). Jelektricheskie svojstva cilindricheskih p'ezokeramicheskih izluchatelej silovoj i kom-pensirovannoj konstrukcii s okruzhnoj poljarizaciej. Electronics and Communication, 19, 62-72. (in Russian)

[18] Deng, G., Li, G., Ding, A., Yin, Q., (2005). Evidence for oxygen vacancy inducing spontaneous normal-relaxor transition in complex perovskite ferroelectrics. Appl. Phys. Lett., 87, 19, 192905. DOI: 10.1063/1.2125110.

[19] GOST II 0444-87. Materialy pezokeramicheskie. Tehnicheskie usloviya. (1987). Moscow, 144.

[20] Zolotarevskij, A.I., Lushchin, S.P., (2017). Issledovanie spektralnoj zavisimosti dielektricheskoj pronicaemosti nekotoryh polyarnih dielektrikov v diapazone nizkih chastot [The study of the spectral relationship of the dielectric permittivity of polar dielectrics in the low frequency range]. Elektrotehnika i elektroenergetika, 1, 5-10. (in Russian) DOI: 10.15588/1607-6761-2017-1-1.

[21] Zolotarevskij, A.I., Lushchin, S.P., (2018). Issledovanie chastotno-temperaturnoj zavisimosti dielektricheskoj pronicaemosti pezokeramiki CTS v diapazone nizkih chastot [Investigation of the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low frequency range]. Elektrotehnika i elektroenergetika, 1, 15-21. (in Russian) DOI: 10.15588/1607-6761-2018-1-2.


GOST Style Citations


[1] Физические основы, методы исследования и практическое применение пьезоматериалов [Текст] / В.А. Головнин, И.А. Каплунов, О.В. Малышкина и др.-М.: Техносфера, 2013. - 272 с. ISBN: 978-5-94836-352-3.

[2] Глозман, И.А. Пьезокерамика [Текст] / И.А. Глозман. - М.: Энергия, 1972. - 288 с.

[3] Яффе, Б Пьезоэлектрическая керамика [Текст] / Б. Яффе, У. Кук, Г. Яффе. – М.: Мир, 1974. – 288 с.

[4] Bell A.J. Ferroelectrics: The Role of Ceramic Science and Engineering / A.J. Bell // J. Eur. Ceram. Soc. - 2008. - Vol. 28(7). - P. 1307-1317.  

[5] Лайнс, М. Сегнетоэлектрики и родственные материалы [Текст] / М. Лайнс, А. Глас. - М.: Мир, 1981. - 736 с.

[6] Физика сегнетоэлектрических явлений [Текст] / Г.А. Смоленский, В.А. Исупов, Р.Е. Пасынков и др. ; отв. ред. Г.А. Смоленский. - Л.: Наука: Ленингр. отд.-ние, 1985. - 396 с.

[7] Физика сегнетоэлектриков: современный взгляд [Текст] / под ред. К.М. Рабе, Ч.Г. Ана, Ж.-М. Трискона; пер. с англ. - М.: БИНОМ. Лаборатория знаний, 2011. - 440 с.

[8] Трофимов, А.И. Пьезоэлектрические преобразователи статических нагрузок [Текст] / А.И. Трофимов. – М.: Машиностроение, 1979. – 95 с.

[9] Шарапов, В.М. Пьезоэлектрические датчики [Текст] / В.М. Шарапов, М.П. Мусиенко, Е.В. Шарапова; под ред. В.М. Шарапова. – М.: Техносфера, 2006. – 632 с. ISBN 5-94836-100-4.

[10] Пьезоэлектрические резонаторы: Справочник [Текст] / В.Г. Андросова, Е.Г. Бронникова, А.М. Васильева и др.; Под ред. П.Е. Кандыбы и П.Г. Позднякова. – М.: Радио и связь, 1992. – 392 с. ISBN 5-256-00634-7.

[11] Тареев, Б.М. Физика диэлектрических материалов [Текст] / Б.М.Тареев. - М.: Энергоиздат, 1982. - 320 с.

[12] Поплавко, Ю.М. Физика диэлектриков [Текст] / Ю.М. Поплавко. - К.: Вища школа, 1980. - 400 с.

[13] Киселев, В.Ф., Электронные явления в адсорбции и катализе на полупроводниках и диэлектриках [Текст] / В.Ф. Киселев, О.В. Крылов – М.: Наука, 1979. - 112 с.

[14] Morozov, M.I. Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardering and softening / M.I. Morozov, D. Damjanovic // J. of Applied Physics. – 2010. – Vol. 107, issue 3, 034106. https://doi.org/10.1063/1.3284954.

[15] Azad, Subhash Chandra. Study of Dielectric and Transport Properties of Gadolinium (Gd3+) Modified Lead Zirconate Titanate [PZT] Ceramics / Subhash Chandra Azad, R. Ranjan, N.K. Singh // Intern. J. of Research and Scientific Innovation. – 2016. – V. III, iss. XI. – P. 67-69. ISSN 2321-2705.

[16] Osak, Andrzej. AC low frequency conductivity in PZT PFS ferroelectric ceramics / Andrzej Osak // Technical Transactions. – 2017. – Vol. 1. – P. 173-185.  DOI: 10.4467/1353737XCT.17.015.6112.

[17] Лейко, А.Г. Электрические свойства цилиндрических пьезокерамических излучателей силовой и компенсированной конструкции с окружной поляризацией [Текст] / А.Г. Лейко, Н.Д. Гладких, А.И. Нижин, Я.И. Старовойт // Electronics and Communication. – 2014, Vol. 19. – С.62-72.

[18] G. Deng, G. Li, A. Ding, Q. Yin. Evidence for oxygen vacancy inducing spontaneous normal-relaxor transition in complex perovskite ferroelectrics // Appl. Phys. Lett. 2005, Vol. 87, Iss. 19, 192905. DOI: 10.1063/1.2125110.

[19] ГОСТ II 0444-87. Материалы пьезокерамические. Технические условия [Текст]. – М.: 1987. – 144 с.

[20] Золотаревский, А.И. Исследование спектральной зависимости диэлектрической проницаемости некоторых полярних диэлектриков в диапазоне низких частот [Текст] / А.И. Золотаревский, С.П. Лущин // Електротехніка та електроенергетика. - №1. - 2017. - С. 5-10. DOI: 10.15588/1607-6761-2017-1-1.

[21] Золотаревский, А.И. Исследование частотно-температурной зависимости диэлектрической проницаемости пьезокерамики ЦТС в диапазоне низких частот [Текст] / А.И. Золотаревский, С.П. Лущин // Електротехніка та електроенергетика. - №1. - 2018. - С. 15-21. DOI: 10.15588/1607-6761-2018-1-2.



Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2020 S.P. Lushchin, O.I. Zolotarevskiy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Address of the journal editorial office: Editorial office of the the scientific journal "Electrical Engineering and Power Engineering", Zaporizhzhia Polytechnic National University, Zhukovskiy street, 64, Zaporizhzhia, 69063, Ukraine. phone: +38-061-769-82-96 – the Editing and Publishing Department. E-mail: etae@ukr.net; rvv@zp.edu.ua