Definition of the current spreading process ways in the internal volume of ore-thermal furnace
DOI:
https://doi.org/10.15588/1607-6761-2019-2-5Keywords:
ore-thermal furnace, elemental volume, current spreading paths, electrical energyAbstract
Purpose. The purpose of this work is the theoretical determination of current spreading ways in the internal volume of the ore-thermal furnace bath. Using the obtained results, it is possible to determine where and in what electrical energy amount is allocated in the working space. It will allow to calculate the bath temperature field.
Methodology. In the course of research work the theory of electrical circuits was used to describe electrical processes and the method of cylindrical coordinates to represent the working space of a bath as a set of mono-volume components.
Findings. The proposed chain of steps to determine the current spreading ways and the calculation formulas to find out the electrical energy input amount to each allocated elemental component of the ore-thermal furnace volume are used. The mathematical formulae to construct the current trajectory flow are proposed.
Originality. For the first time, it was assumed that the trajectory of current flow in the furnace working space has the shape of an arc. It passes between two electrodes and exists both in the horizontal and in the vertical flats of the bath due to the electrical conductivity of the charge materials. The latter, in turn, varies depending on the temperature value. This fact is taken into account when calculating the amount of energy input because of electric current.
Practical value. Subsequently, the implementation of the proposed method for determination the paths of current spreading on a mathematical or physical model allows to obtain data on the amount of electrical energy input at any point in the furnace. Since the process of energy input is one of the first steps in the process of obtaining ferroalloys, the proposed above will allow to calculate various parameters as for one elemental volume (point) and as for the whole furnace bath volume.
References
[1] Nehamin, S.M. (2013). Upravleniye energeticheskoy strukturoy rabochego prostranstva dugovykh staleplavil'nykh i rudnotermicheskikh pechey mekhanizm povysheniya effektivnosti ikh raboty. Elektrometallurgija. 11, 9–16.
[2] Sergeev, P.V. (1963). Energeticheskiye zakonomernosti rudnotermicheskikh elektropechey, elektroliza i elektricheskoy dugi Moscow, Metallurgy, 368.
[3] Platonov, G.F. (1965). Parametry i elektricheskiye rezhimy metal-lurgicheskikh elektrodnykh pechey. Moscow, Energija, 224.
[4] Strunskij, B.M. (1972). Rudnotermicheskiye plavil'nyye pechi. Moscow, Metallurgija, 368.
[5] Sisojan, G.A. (1961). Elektricheskaya duga v elektricheskoy pechi. Moscow, Metallurgizdat, 216.
[6] Al'tgauzen A.P. (1967 Elektrotermicheskoe oborudovanie. Spravochnik, Moscow, Jenergija, 216.
[7] Oldziyevsky, S.A., Kravchenko, A.V., Nzhurin, V.I., Borisenko, I.A. (1990). Matematicheskoye modelirovaniye elektricheskikh poley pechey rudnoy elektrotermii [Tekst]. Moscow, Metallurgy, 114.
[8] Yershov, V.A., Dancyz, Ya.B., Zhilov, G.M. (1974). Teoreticheskie osnovy himicheskoj elektrotermii. Leningrad, Himija, 184.
[9] Danzys, Ya.B., Zhilov, G.M., Valkov, Z.A. (1991). Elektricheskie harakteristiki dugovogo razrjada pechej himicheskoj elektrotermii i sposoby ih kontrolia. Leningrad, LNGK, 54.
[10] Danzys Ya.B., Yershov, V.A., Zhilov, G.M. (1984). Elektrotermicheskie processy himicheskoi tehnologii: Uchebnoe posobie dlia vuzov. Leningrad, Himija, 464.
[11] Levchenko, S.A., (2016). Elektromagnitne ta teplove polia rudnotermichnoi' plavylnoi' pechi. Visnyk NTU «HPI». Serija, Mehaniko-tehnologichni systemy ta kompleksy. 17(1189), 76-80.
[12] Kachan, Yu.G., Mishchenko, V.Yu. (2017). Shchodo zminyuvannya pytomoho elektrychnoho oporu shykhty pid chas vyplavky vysoko vuhletsevoho feromarhantsyu. Metalurgija : naukovi pratsi Zaporizkoyi derzhavnoyi inzhenernoyi akademiyi, Zaporizhzhia, RVV ZDIA, 2 (38), 131-133.
[13] Artjuh. F.S., Kuharev. A.L. (2014). Puti povyshenija energojeffektivno-sti moshhnyh elektropechnyh ustanovok. Vіsnik NTU «HPІ». Serіja, Energetika: nadіjnіst' ta energoefektivnіst', Harkіv: NTU «HPІ», 56 (1098), 11-21.
[14] Kachan, Yu.G., Mishchenko, V.Yu. (2018). Shhodo kompleksnogo pidhodu pry modeljuvanni roboty rudnotermichnoi' pechi. Metalurgija : naukovi praci Zaporiz'koi' derzhavnoi' inzhenernoi' akademii'. – Zaporizhzhja, RVV ZDIA No 1 (39), 94-96.
[15] Kachan, Yu.G., Batasova, N.A. (2007). Dinamicheskaja model' temperaturnogo polja v elektricheskom teploakkumulirujushhem preobrazovatele. Teorija i praktika metallurgii. Dnepropetrovsk, 6 (61), 63-66.
[16] Bakyrov, A.H., Zhunusov, A.K., Chekymbaiev, A.F. and Shoshai, Zh., (2018). Issledovanie udel'nogo elektricheskogo soprotivlenija shihtovyh smesej dlia vyplavki ferrosilikoaljuminiia Nauka i tehnika Kazahstana. Pavlodar, 2, 14-18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 V. Yu. Mishchenko, Yu. H. Kachan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.