Resonant reactive power amplifier. Analysis of electromagnetic processes

Authors

DOI:

https://doi.org/10.15588/1607-6761-2019-2-3

Keywords:

resonance, inductance, Tesla transformer, electric power, transformation coefficient

Abstract

Purpose. Analysis of electromagnetic processes and the theoretical substantiation of the fundamental possibility of the reactive power resonant amplification of harmonic signals in a circuit of two real inductively coupled sequential active-reactive circuits, where the “input” element is the secondary circuit

Methodology. The study of this topic was carried out most extensively and fully, namely: studied all possible sources of theoretical substantiation of this work; all factors considered in sources are compared; practical facts of the resonance phenomenon are estimated by the example of an experimental model.

Findings. The implementation scheme of the converter is proposed, where there is not only the  voltage transformation, but the power of harmonic currents and voltages. It was found that with an appropriate choice of parameters, the proposed resonant converter circuit can be considered as a reactive electric power amplifier with the highest possible gain— Kmax = 0,5 × ((ω L2) / R2), ω is the resonant frequency, L2 is the “output” inductance, R2 is the active resistance. Physically, the maximum power gain by a resonant transducer is due to the minimum possible transfer of energy from the secondary circuit to the primary one with an input harmonic voltage source. The quantitative estimates made for the experimental model confirmed the results of the qualitative analysis and showed that the proposed resonant amplifier circuit can provide high indicators of its effectiveness (for example, an increase in electrical power of ~ 38 times!).

Originality. The scientific novelty of this work consists in substantiating the principle efficiency of a resonant amplifier of reactive electrical power, based on the findings of a generalized theoretical analysis of electromagnetic processes and numerical estimates for one of its experimental implementation options.

Practical value. The theoretical studies carried out on the proposed scheme of a resonant electric power amplifier are of practical interest for further experimental studies, as well as, for example, for formulating recommendations in the development of circuit elements of power sources for magnetic-pulsed attraction of specified surface areas of thin-walled sheet metals. The search for the conditions for the most effective efficiency, the experimental study of electromagnetic processes in the proposed scheme of a resonant reactive power amplifier and the development of proposals for the conversion of reactive into active electrical power seem very promising in the direction of the research.

Author Biographies

Yu.V. Batygin, Kharkov national automobile and highway university

Sci.D, Professor, Chief of the physics chair of Kharkiv National Automobile and Highway University, Kharkiv

G.S. Serikov, Kharkov national automobile and highway university

Ph.D, Associate professor, Associate professor of the automobile electronics chair of Kharkiv National Automobile and Highway University, Kharkiv

S.O. Shinderuk, Kharkov national automobile and highway university

Ph.D, Associate professor, Associate professor of the physics chair of Kharkiv National Automobile and Highway University, Kharkiv

V.A. Strelnikova, Kharkov national automobile and highway university

P.G, Assistance tutor of the physics chair of Kharkiv National Automobile and Highway University, Kharkiv

E.R. Usmonov, Kharkov national automobile and highway university

Student of the automobile school of Kharkiv National Automobile and Highway University, Kharkiv

References

[1] Pavlov, H. V., Obrubov, A. V. (2014). Rezonansnye preobrazovateli v energoeffektivnykh elektrotekhnicheskikh sistemakh [Resonant amplifiers in energy efficient electrical engineering systems]. Energosberezhenie, energetika, energoaudit. Sp. is. 1, 9 (128), 13–23

[2] Agheb, E., Hayati Soloot, A., Niayesh, K., Hashemi, E. & Jadidian, J. (2009). On the Optimum Design of Air-Cored Tesla Transformers. Acta Physica Polonica. 115 (6), 1152–1154.

[3] Osipov, A. V., Shyniakov, Yu. A., Chernaya, Yu. A. & Tkachenko, A. A. (2015). Rezonansnye preobrazovateli energii solnechnoy batarei [Resonant energy transformers in solar battery] «Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie vysshego obrazovaniya» Publ. Reshetnevskie chteniya. 1, 19, 290–292

[4] Benenson, W., Harris, J. W., Stoker, H., & Lutz H. (2002). Handbook of Physics. New York: Springer Publ.

[5] Denicolai, M. (2001). Tesla transformer for experimentation and research. Helsinki university of Technology.

[6] Tesla, N. (2011). My inventions and other writings. Penguin.

[7] Gerekos, Ch. (2012) The Tesla Coil. Brussels: Université Libre de Bruxelles

[8] Batygin, Yu. V., Chaplygin, Ye. A., Shinderuk, S. A. & Sabokar, O. S. (2017) Rezonans vo vtorichnom konture transformatora Tesla pri vozbuzhdenii garmonicheskim napryazheniem [Resonance in the secondary circuit of Tesla transformer excited by harmonic voltage]. Vіsnik NTU "KhPІ". Matematichne modelyuvannya v tekhnіtsі ta tekhnologіyakh. 30(1252), 25–31.

[9] Batygin, Yu. V., Shinderuk, S. A., Serikov, G. S. (2018). The quantitative indices of the induction effects and the resonance phenomena in the Tesla transformer. «Danish Scientific Journal», 11–1, 72–79

[10] Demirchyan, K. S., Neyman, L. R., Korovkin, N. V. & Chechurin, V. L. (2003). Teoreticheskie osnovy elektrotekhniki 4th ed., 1, Spb.: «Piter».

[11] Tilbury, M. (2008). The Ultimate Tesla Coil Design and Construction Guide, McGraw-Hill

[12] Atabekov, G. I. (2006). Osnovy teorii tsepei. L: Energiia.

[13] Batygin, Yu. V., Serikov, G. S., Sinderuk, S. A. (2018). Rezonansnyy usilitel' elektricheskoy moshchnosti. Osnovnye raschetnye sootnosheniya [Rasonant amplifier. The main calculation relations]. Vіsnik Natsіonal'nogo tekhnіchnogo unіversitetu «KhPІ». Serіya: Problemi udoskonalennya elektrichnikh mashin і aparatіv. Teorіya і praktika.: zb.nauk. pr. 32(1308), 59–63

[14] Korn, G. A., Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers: definitions, theorems, and formulas, for reference and review. Mineola, N.Y.: Dover Publications.

[15] Batygin, Yu. V., Serikov, G. S., Sinderuk, S. A. (2018). Rezonansnyy usilitel' elektricheskoy moshchnosti. Eksperimental'nye issledovaniya [Resonant amplifier. Experimental research]. Luts'k: LNTU. Zb.naukovikh prats': Perspektivnі tekhnologії ta priladi, 13, 18–24

[16] Batygin, Yu. V., Barbashova, M. V., Sabokar O. S. (2018) Electromagnetic metal forming for advanced processing technologies. New York: Springer Publ.

[17] Batygin, Yu. V., e.a. Sposib generuvannja vysokyh amplitud zminnoi' synusoi'dal'noi' naprugy v rezonansnomu rezhymi [Method for generating high amplitudes of sinusoidal voltage variable in resonance mode]. Patent Ua, no. 133471, 2019.

Published

2019-07-01

How to Cite

Batygin, Y., Serikov, G., Shinderuk, S., Strelnikova, V., & Usmonov, E. (2019). Resonant reactive power amplifier. Analysis of electromagnetic processes. Electrical Engineering and Power Engineering, (2), 34–42. https://doi.org/10.15588/1607-6761-2019-2-3