OPTIMIZATION OF TIMES OF MAGNETIZATION AND DEMAGNETIZATION OF A STOPPED FREQUENCY-REGULATED ASYNCHRONOUS MOTOR

Authors

DOI:

https://doi.org/10.15588/1607-6761-2018-4-2

Keywords:

asynchronous motor, frequency regulation, electric power loss, optimization

Abstract

Purpose. Obtaining analytical dependencies for calculating the extreme (minimum) values of the main electrical energy losses of a three-phase short-circuited asynchronous engine in the regimes of its magnetization and demagnetization and determining the optimal values of the magnetization and demagnetization times corresponding to these regimes.

Methodology. Mathematical analysis, the theory of similarity and imitational computer modeling.

Findings. Analytical dependences are obtained for calculating the main electric power and energy losses in the magnetization and demagnetization regimes of a stopped short-circuited frequency-controlled asynchronous motor with reference to various types (linear, parabolic and in hyperbolic sinus functions) of the rotor flux modulus of the motor. The study of transient electromagnetic and energy processes of this engine in the specified regimes. The minimum possible values of the main energy losses of a stopped engine in the regimes of its magnetization and demagnetization and the corresponding optimal values of the times of magnetization and demagnetization are determined for the different types of trajectories of change in the engine-linking rotor of the motor.

Originality.  It consists in obtaining analytical calculation dependences for determining the optimal magnetization times and demagnetization of the stopped frequency-controlled asynchronous motor, which ensure the minimization of its main energy losses in the magnetization and demagnetization regimes.

Practical value.  Reduction of unproductive energy losses for frequency-controlled asynchronous motor with their magnetization and demagnetization regimes.

Author Biography

V.A. Volkov, PhD., Associate Professor

Doctoral Candidate of National Mining University, Dnepr

References

[1] Tolochko, O.I., Rozkaryak, P.I., Chekavsky, G.S., Kuzhel, A.K. (2011). Upravlenie processami pravlenie namagnichivsniya I razmagnichivaniya assinhronnogo dvigatelya v sistemah vectornogo upravleniya [Control of magnetization and demagnetization processes of an asynchronous motor in vector control systems]. Elektromekhanichny і and energozberigayuchі sistem, 3, 15, 79 - 82. (in Ukraine.)

[2] Volkov, V.A. (2013). Optimizaciya regimov namagnichivaniya I razmagnichivaniya chastotno-reguliruemogo asinhronnogo dvigatelya [Optimization of magnetization and demagnetization modes of variable frequency asynchronous motor]. Electrical engineering and power engineering, 2, 15, 64 - 70. (in Ukraine.)

[3] Volkov, V.A. (2018). Optimizaciya namagnichivaniya i razmagnichivaniya ostanovlennoy trehfaznoy sinhronnoy mashini [Optimization of magnetization and expansion of a stopped three-phase synchronous machine]. Electrical engineering and power engineering, 1, 52 - 63. (in Ukraine) DOI: 10.15588 / 1607-6761-2018-1-6

[4] Polyakov, V.N., Schreiner, R.T. (2006). Extremalnoe upravlenie electricheskimi dvigatelyami. Ekaterinburg: USTU-UPI, 420.

[5] Kovach, K.P. (1963). Perehodnie processi v mashinah peremennogo toka. Moscow: Gosenergoizdat, 744.

[6] Leonhard, W. (1996). Control of Electrical Drives. Berlin, 420. DOI: 10.1007/978-3-642-97646-9

[7] Bose, B.K. (2002) Modern power electronics and AC. NJ: Prentice Hall RTR, 711.

[8] Sandler, A.S., Sarbatov, R.S. (1974). Avtomaticheskoe chastotnoe upravlenie asinhronnimi dvigatelyami. Мoscow: Energiya, 328.

[9] Epshteyn, I.I. (1982). Avtomatizirovanniy electroprivod peremennogo toka. Moscow: Energoizdat, 192.

[10] Pivnyak, G.G., Volkov, A.V. (2006). Sovremennoe chastotno-reguliruemie asinhronnie electroprivodi s shirotno-impulsnoy modulyaciey. Dnepropetrovsk: NSU, 470.

[11] Schreiner, R.T., Dmitrenko, Yu.A. (1982). Optimalnoe chastotnoe upravlenie asinhronnimi electroprivodami. Chisinau: Shtiintsa, 224.

[12] Andreeva, E.A., Tsiruleva, V.M. (2006). Variacionnoe ischislenie i metodi optimizacii. Moscow: Higher., 584.

[13] Vygodsky, M.Ya. (1976). Spravochnik po vishey matematike. Moscow: Science, 872.

[14] Tikhovod, S.M. (2015). Usovershenstvovanie itercionnih metodov reheniya system nelineynih uravneniy sostoyaniya magnitoelectricheskih shem zameheniya [Improvement of iterative methods for solving systems of nonlinear equations of the state of magnetoelectric replacement schemes]. Electrical engineering and power engineering, 1, 30 - 46. (in Ukraine) DOI: http://dx.doi.org/ 10.15588 / 1607-6761-2015-1-8

[15] Tikhovod, S.M., Kornus, T.M., Patalah, D.G. (2015). Metod uskoreniya chislennogo rascheta perehodnih processov v electricheskih cepyah na osnove aproksimacii resheniya algebraicheskimi polinomami [The method of accelerated numerical calculation of transients in electrical circuits based on approximation of the solution by algebraic polynomials]. Electrical engineering and power engineering, 2, 48 – 54. (in Ukraine) DOI: http://dx.doi.org/10.15588/1607-6761- 2015-2-7

[16] Venikov, V.A. (1976). Teoriya podobiya i modelirovanie. Moscow: Higher. shk., 479.

Published

2019-01-28

How to Cite

Volkov, V. (2019). OPTIMIZATION OF TIMES OF MAGNETIZATION AND DEMAGNETIZATION OF A STOPPED FREQUENCY-REGULATED ASYNCHRONOUS MOTOR. Electrical Engineering and Power Engineering, (4), 17–29. https://doi.org/10.15588/1607-6761-2018-4-2