# FUZZY MODELING OF FAILURE PROBABILITY OF APARATES FOR PROTECTION FROM OVERVOLTAGE

## Authors

• S.V. Domoroshchyn DneproHPS-1, Zaporizhzhia, Ukraine, Ukraine
• O.A. Sakhno Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine, Ukraine

## Keywords:

overvoltage protection device, arrester, voltage limiter, fuzzy model, probability of failure, interviewing experts

## Abstract

Purpose. The aim of the article is to develop a mathematical model for a comprehensive assessment of the probability of failure of an overvoltage protection device using a fuzzy set device, which is based on expert knowledge and diagnostic data obtained during the operational period.

Methodology.  The study was carried out using the expert survey method, weight coefficients method, Saati pair comparison matrix method, fuzzy logic methods, fuzzy sets theory, high voltage technology theory, thermal radiation theory.

Findings. The authors developed a fuzzy model for determining the probability of failure of a gate arrester and a voltage limiter, taking into account the influence of a combination of such factors as the state of insulation, the state of current-carrying nonlinear elements, the temperature state of the object under study, and the number of operations of the apparatus. On the basis of the model, an automated software system was developed, using which the state of the voltage limiter type 3ER2 276-2PF32-1NA1 of the «SIEMENS» company was diagnosed. It is operated at Dneprovskaya HPP-1, 330 kV for cell ОПН AT-331, and arresters of type РВМК -750M for cell PB 750 2 AT.

Originality. The theory of technical diagnostics of high voltage overvoltage protection devices without disconnecting devices from the network (online) on the basis of a fuzzy model for determining the probability of failure of the device has been further developed. The known model differs from the known ones in that it takes into account the state of insulation, the state of the conductive parts, the number of operations of the apparatus, the thermal state of the apparatus and the contact connections, and allows calculating the probability of failure of the apparatus during its operation.

Practical value.  The developed mathematical model can be used in automated software and hardware-software systems for: diagnosis, maintenance and repair planning, and distribution of financial assets of electric power enterprises. The results of diagnosing different protection apparatus confirmed the adequacy of the developed model. The developed model can be used for all types of protection devices for high voltage switchgears. The model makes it possible to comprehensively evaluate the technical state of the investigated object by integrating the input parameters (current, resistance, temperature, etc.) that are inherently different in nature and which affect the technical state and the probability of its failure. The constructed model allows the machine to be put out of repair after the current state of the object, and not according to the schedule of repairs, which will save the material and human resource, and taking into account the state course for estimating the equipment resource according to the actual state and creating switchgears without a permanent maintenance staff is very relevant.

## Author Biographies

### S.V. Domoroshchyn, DneproHPS-1, Zaporizhzhia, Ukraine

engineer of the test and measurement of the  DneproHPS-1

### O.A. Sakhno, Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine

Ph.D, Associate professor of the electrical and electronic apparatuses department of the Zaporizhzhia National Technical University

## References

[1] (2002). Zasoby zakhystu vid perenapruh u elektroustanovkakh 6-750 kV. Instruktsiia z montazhu ta ekspluatatsii. HKD 34.35.512-2002. Obiednannia enerhetychnykh pidpryemstv “Haluzevyi rezervno-investetsiinyi fond rozvytku enerhetyky”, 138.

[2] (2009). Normy vyprobuvannia elektroobladnannia. SOU-N EE 20.302:2007. Ministerstvo palyva ta enerhetyky, 278.

[3] (2002). Tekhnichna ekspluatatsiia elektrychnykh stantsii I merezh. Pravyla. HKD 34.20.507-2003. “LvovORHRES, HDP “DonORHRES”, 341.

[4] Lebedka, S.N. (2012). Matematicheskoe modelirovanie rezhimov raboty elektrosetey s OPN. Skhidno-Evropeyskii zhurnal peredovyh technologii, 3/8, 25-29. (in Russian.)

[5] Grib, O.G. (2014). Rabota sredstv zaschity ot perenapryazheniya v energosistemah pri nalichii vysshih garmonik. Visnyk NTU “HPI, 41(1084), 78-86. (in Russian.)

[6] Shevchenko, S. Yu. (2013). Osobennosti zaschity oborudovaniya podstantsiy ot perenapryazheniy. Naukovi pratsi DonNTU. Elektrotekhnika і enerhetyka, 1(14), 308-312. (in Russian.)

[7] Heinrich, C., Hinrichsen, V. (2001). Diagnostics and monitoring of metal-oxide surge arresters in high-voltage networks-comparison of existing and newly developed procedures. IEEE Transactions on Power Delivery, 16, 1, 138-143. DOI: 10.1109/61.905619.

[8] Yu-ting XU, Xiao-hua YUAN, Ya-li MO, Guo-tai Dong and De-cheng (2016). Research on On-line Monitoring of Insulation of Metal Oxide Surge Arrester. 2016 International Conference on Material Science and Civil Engineering (MSCE 2016), 328- 336.

[9] Ibrahim, A. Metwally, Mohamed Eladawy, E. A. Feilat. (2017). Online condition monitoring of surge arresters based on third-harmonic analysis of leakage current. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 4, 2274-2281. DOI: 10.1109/TDEI.2017.006334.

[10] Chunihin, A.A. (1988). Elektricheskie apparaty: Obschiy kurs.Moscow: Energoamizdat, 720.

[11] Aleksandrov G.N., Borisov V.V., Ivanov V.L. (1989). Elektricheskie apparaty vysokogo napryazheniya. Uchebnoe posobie dlya vuzov.Leningrad: Energoatomizdat, 344.

[12] Kosteriev, M. V. (2010). Pytannia pobudovy nechitkykh modelei otsinky tekhnicnoho stanu obiektiv elektrychnykh system. Kyiv: NTUU “KPI”, 131.

[13] Shtovba,S.D. (2007). Proektirovanie nechetkih sistem sredstvami MATLAB.Moscow: Goryachaya liniya – telekom, 288.

[14] Litvinov V.V. (2010). Vykorystannia metodiv poparnoho porivniannia dlia vyznachennia priorytetnosti sposobiv zabezpechennia statychnoi stiikosti asynkhronnykh dvyhuniv v umovakh bahatokryterialnogo vuboru. Naukovi visti NTUU “KPI, 2, 24-29.

[15] Remennikov, V.B. (2005). Upravlencheskie resheniya.Minsk: Yuniti, 144.

[16] Saati T. (1993). Prinyatiye resheniy. Metod analiza iyerarkhiy.Moscow: Radio i svyaz', 278.

[17] .Hobrei, R., Chernov V., Udod Ye. (2007). Diagnostuvannia elektroustanovok 0,4 – 750 kV zasobamy infrachervonoi tekhniky. Kyiv: “KVITs”, 374.

[18] (2007). Tekhnicheskoe diagnostirovaniye elektrooborudoviniya i kontaktnykh soedineniy elektroustanovok I vozdushnykh liniy elektroperedachi sredstvami infrakrasnoy tekhniki. SOU-N EE 20.577:2007. Ministerstvo palyva ta enerhetyky, 123

2018-10-01

## How to Cite

Domoroshchyn, S., & Sakhno, O. (2018). FUZZY MODELING OF FAILURE PROBABILITY OF APARATES FOR PROTECTION FROM OVERVOLTAGE. Electrical Engineering and Power Engineering, (3), 39–51. https://doi.org/10.15588/1607-6761-2018-3-5

## Section

Electroenergetics