BOUNDARY CONDITIONS OF HEAT EXCHANGE IN THE LACE SEALS OF CYLINDERS OF HIGH AND LOW PRESSURE OF TURBINE K-1000-60 / 3000

Authors

  • O. Yu. Chernousenko National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky», Ukraine http://orcid.org/0000-0002-1427-8068
  • L.S. Butovskyi National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky», Ukraine http://orcid.org/0000-0001-8947-9887
  • T.V. Nikulenkova National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky», Ukraine http://orcid.org/0000-0003-1880-1124
  • I.S. Bednarska National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky», Ukraine http://orcid.org/0000-0002-5558-4467

DOI:

https://doi.org/10.15588/1607-6761-2018-2-2

Keywords:

steam turbine, front end seal, rear end seal, starting from a cold, hot, unfired condition, heat exchange in seals, border conditions

Abstract

Purpose. Investigation of operating conditions of a wet-steam turbine with a capacity of 1000 MW, development of a calculation procedure and determination of the boundary conditions for heat transfer for end seals of high and low pressure rotors in the variable operating modes of power units for the subsequent evaluation of low cycle fatigue of the K-1000-60 / 3000 turbine rotors, determining the degree of possible damage to the main metal, calculating the residual operating time, as well as an individual resource.

Methodology. When modeling the geometry of the seals, the first stage of verification calculation developed a technique for creating spatial structures of turbomachine elements using the Solid Works software and the mathematical calculation method, which is embedded in it (the finite element method) for the RVD and RND.

Findings. The boundary conditions of the sections of the end seals of the RVD and RND at the starts from cold, non-heated and hot states are calculated taking into account the change in the regime parameters. It is established that the value of the heat transfer coefficient increases with increasing turbine power and has a maximum value at the nominal mode. The maximum value of the heat transfer coefficient for the RVD is α = 2168.8 W / (m2 K), for RND α = 701.5 W / (m2 · K). An approximating dependence of the heat transfer coefficient for the initial section of the high-pressure rotor on the relative steam consumption on the turbine in the range 0.4-1.0 has been obtained.

Originality. The authors for the first time calculated the values of the heat transfer coefficient for the end seals of high and low pressure rotors for three types of starting-from a cold, non-heated and hot state, depending on the thermal state of the rotors and the relative steam flow to the turbine. The approximated dependence of the heat transfer coefficient for the initial section of the high-pressure rotor on the relative steam consumption on the turbine in the range 0.4-1.0 makes it possible to perform the necessary calculations for other types of starts and the temperature states of the rotors.

Practical value. The results of calculating the heat transfer coefficient at the sections of the RVD and RND end seals during starts from different thermal states make it possible to calculate the thermally stressed state of the turbine rotors and to estimate the value of the low-cycle fatigue of the CVP and LPC rotors.

Author Biographies

O. Yu. Chernousenko, National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky»

Sci.D, Professor, Head of the Department of Thermal Power Plants of Thermal and Nuclear Power Plants

L.S. Butovskyi, National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky»

Ph.D, Associate professor, Associate professor of the Department of Thermal Power Plants of Thermal and Nuclear Power Plants

T.V. Nikulenkova, National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky»

Ph.D, Associate professor of the Department of Thermal Power Plants of Thermal and Nuclear Power Plants

I.S. Bednarska, National Technical University of Ukraine «Kyiv Polytechnic Institute. Igor Sikorsky»

graduate student of the Department of Thermal Power Plants of Thermal and Nuclear Power Plants

References

[1] P. Omeljanovskyi. (2010). Teplovaja jenergetika – novye vyzovy vremeni. L'vov: NVF «Ukrainskie tehnologii», 690. [in Russian].

[2] IAEA Power Reactor Information System. (2011). Energy, Electricity and Nuclear Power Estimates for the Period up 2050. Td. Vienna: IAEA. [in English].

[3] World Energy Outlook (2011). OECD/IEA. [English].

[4] G. Heusener, U. Muller, T. Schulenberg , D.A. Scuarer. (1998). European Development Program for a high Perfomance Light Water Reactor (HPLWR). 17-th Congress of World Energy Council. Huston, Texas, 2, 23-28. [in English].

[5] ND MPE Ukraїni. Kontrol' metalu і prodovzhennja termіnu ekspluatacії osnovnih elementіv kotlіv, turbіn і truboprovodіv teplovih elektrostancіj. (2005). Tipova іnstrukcіja. SOU-N MPE 40.17.401:2004. – Ofіc. vid. – K.: GRІFRE: M-vo paliva ta energetiki Ukraїni. (Normativnij dokument Mіnpalivenergo Ukraїni, Tipova іnstrukcіja), 76. [in Ukrainian].

[6] RTM 108.021.103 (1985). Detali parovyh stacionarnyh turbin. Raschjot na malociklovuju ustalost'. [in Russian].

[7] RD 34.17.440-96. (1996). Metodicheskie ukazanija o porjadke provedenija rabot pri ocenke individual'nogo resursa parovyh turbin i prodlenii sroka ih jekspluatacii sverh parkovogo resursa. [in Russian].

[8] GOST 24 277-91 "Turbiny parovye stacionarnye dlja TJeS. Obshhie tehnicheskie trebovanija. Trans-portirovka i hranenie. Garantii izgotovlenija" [in Russian].

[9] Rozporjadzhennja Kabіnetu mіnіstrіv Ukraїni vіd 29 kvіtnja 2004 roku № 263-r. (2016). “Pro shvalennja kompleksnoї programi robіt z prodovzhennja termіnu ekspluatacії dіjuchih energoblokіv atomnih elek-trostancіj”. www.kmu.gov.ua. [in Ukrainian].

[10] A.G. Kostjuk, V.V. Frolov, A.E. Bulkin, A.D. Truhnij, pod. red. A.G. Kostjuka. (2008). Parovye i gazovye turbiny dlja jelektrostancij. Moscow, Izdatel'skij dom MJeI, 556. [in Russian].

[11] Trojanovskij B.M., G.A. Filippov, A.E. Bulkin. (1985). Parovye i gazovye turbiny atomnyh jelektrostancij. Moscow, Jenergoatomizdat, 450. [in Russian].

[12] Pod.red. K.P. Selezneva, A.I. Taranina, V.G. Tyryshkina. (1964). Teplovoe sostojanie rotorov i cilindrov parovyh i gazovih turbin, Leningrad, Mashinostroenie, 284. [in Russian].

[13] Kapinos V.M., L.A. Gura. (1973). Teploobmen v stupenchatom labirintovom uplotnenii, Teplojenergetika, 6, 22-25. [in Russian].

[14] RTM 108.020.33-86. (1988). Uplotnenija labirintnye stacionarnyh parovyh i gazovyh turbin i kom-pressorov. Proektirovanie i raschet. NPO CKTI. [in Russian].

[15] Bondarenko G.A., Baga, V.N. (2016). Modelirovanie rashodnyh harakteristik labirintnyh uplotnenij s gladkim valom. Vіsnik NTU “HPІ”. Serіia: Energetichnі ta teplotekhnіchnі protcesm i ustatkuvannia, 8, 1180, 60-64. [in Russian].

[16] Glolshhapov V.N., Bahmutskaja, Ju.O. (2016). Harakteristiki techenija para v koncevіh uplotnenijah CVD na etape nabora vakuuma. Vіsnik NTU “HPІ”. Serіia: Energetichnі ta teplotekhnіchnі protcesy i ustatkuvannia, 8, 1180, 122-128. [in Russian].

[17] Saharov A.M., S.V. Ushinin, Ju.P. Maljutin, I.A. Lunin. (2005). Pervye rezul'taty ispol'zovanija sistem uplotnenij sotovoj konstrukcii vzamіn uplotnenij tradicionnogo tipa v parovih turbinah TJeC № 16 OAO “Mosjenergo”. Jenergosberezhenie i vodopodgotovka, 2, 34, 30-35 [in Russian].

[18] NPO CKTI. (2018). Modernizacija shemy koncevyh uplotnenij. Retrieved from www.ckts.ru/consolidation.html.

[19] Pas'ko V.P., Beketov, V.G. (2012). Modernizacija koncevyh uplotnenij CND K-1000-60/1500-Global'naja jadernaja bezopasnost'. 5, 74-81 [in Russian].

[20] Rezinskih A.F., G.D. Avguckij, M.V. Fedorov, S.A. Bykov. (2006). Prodlenie resursa turbin T-250/300-240 UTMZ v OAO “Mosjenergo”. Elektricheskie stantcii, 6, 26-31. [in Russian].

[21] Semuk, P.V., Pantelij, N.V. (2016). Optimizacija sistem i rezhimov raboty koncevyh uplotnenij parovyh turbin. Aktual'nye problemy jenergetiki : materialy 72-j nauchno-tehnicheskoj konferencii studentov i aspirantov. Belorusskii natcionalnyi tekhnicheskii universitet. Minsk. BNTU, 546-549. [in Russian].

[22] Shvec I.T., Dyban, E.P. (1974). Vozdushnoe ohlazhdenie gazovih turbin. Kiev. Naukova dumka, 568. [in Russian].

[23] Stolz G. (1970). Numerical solutions to an invers problem of heat conduction for simple shapes. Trans/ASME C. J. Heat Transfer, 1, 20-26. [in English].

[24] Ueda T., Harada G. (1964). Experiment of heat transfer on surfices with transverse fins for flow direction. Bull. JSME, 28, 759-768. [in English].

[25] Instrukcija po jekspluatacii “Turbina parovaja № 1. TC.0166.IJe-10” jenergobloka № 1 K-1000-60/3000.

[26] Matsson, J. (2015). An Instruction to Solid Works Flow Simulation. SDC Publications, 350. [in English].

[27] RTM 108.020.16-83. (1983). Raschet temperaturnyh polej rotorov i korpusov parovyh turbin. Leningrad. NPO CKTI, 112. [in Russian].


Published

2018-07-31

How to Cite

Chernousenko, O. Y., Butovskyi, L., Nikulenkova, T., & Bednarska, I. (2018). BOUNDARY CONDITIONS OF HEAT EXCHANGE IN THE LACE SEALS OF CYLINDERS OF HIGH AND LOW PRESSURE OF TURBINE K-1000-60 / 3000. Electrical Engineering and Power Engineering, (2), 16–26. https://doi.org/10.15588/1607-6761-2018-2-2