MANAGEMENT OF GAS-AIR ENERGY INSTALLATION OF INDUSTRIAL ENTERPRISE

Authors

DOI:

https://doi.org/10.15588/1607-6761-2017-2-9

Keywords:

technological installation, gas-air streams, electric energy, control, microcontroller, algorithms

Abstract

Purpose. The goal of the work is to substantiate the issue of effective use of kinetic energy of gas-air flows used by the technological installation for generating electric power, which will allow developing a new control algorithm and creating new software for controlling the gas-air power plant. To test the adequacy of the developed control algorithms and software, to develop a laboratory gas-air power plant.

Methodology. To investigate the distribution of air-gas mass in process plants used industrial plant simulation method performed in software SolidWorks Flow Simulation. The method of simulation allowed to develop a new control algorithm and create new software taking into account the basic technical requirements for the management of the gas-air power plant. To test the efficiency of the developed algorithms and control software for the gas-air power plant, a physical modeling method was used on a developed laboratory installation connected via a USB interface with a computer and has a virtual model of the SCADA system presented in the LabVIEW environment.

Findings. Based on the modeling of gas-air flows on the developed mathematical model, the optimal ratios of pipeline sizes are rationally determined, the gas-air mixture costs necessary for the most efficient operation of the gas-air power plant, that is, in the working zone of the gas-air path, the generator screw contacts the most significant flows, providing the maximum effect rotation. The obtained results of research of gas-air flows of technological installations of an industrial enterprise in the software environment of SolidWorks Flow Simulation and on their basis the basic technical requirements for the management of a gas-air power plant are developed. An optimal control algorithm has been developed that enabled it to be introduced into the control scheme of a gas-air power plant with a microprocessor or a specialized microcontroller.

Originality. New possibilities for further improvement of the known basic mathematical models of the kinetics of gas-air flows have been found and variants of adaptation in the field of gas dynamics have been proposed for estimating the expenditure of gas-air flows during the operation of a fan installation on a pipeline. The structural scheme and algorithms for controlling the gas-air power plant are developed, which includes a fan, a generator, a pipeline and a control unit based on the use of the Arduino Uno microcontroller. The algorithm of the subroutine for connecting the gas-air power plant with the SCADA system.

Practical value. The proposed method of generating electric power by a gas-air power plant with a microprocessor control system, as shown by calculations confirmed by experimental studies on a laboratory installation, allows to reduce up to 20% of the amount of spent electricity by a process unit and can be used in industrial conditions. The introduction of gas-air power plants with a microprocessor system and a SCADA system will improve the energy efficiency of process plants.

Author Biographies

V. Y. Lobov, Kryvyi Rih National University

PhD, associate professor, associate professor of the department of automation, computer science and technology

K. V. Lobova, Kryvyi Rih National University

student of the department of automation, computer science and technology

A. V. Dats, Kryvyi Rih National University

student of the department of automation, computer science and technology

References

World Wind Energy Association, “2014 half-year report.” [Elektronnyy resurs]. – Rezhym dostupu: http://www.wwindea.org/webimages/WWEA_half_year_report_2014.pdf. – Nazva z ekranu. – Data perehlyadu: 27.01.17.

Rodrigo, T.P., Sílvio, F.R., Edwin, W., Ricardo, S., Pavol, B., Jan, P. (2013). Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms. Energies, 6, 1–26. doi:10.3390/en6010001.

Alexander, K., Bruno, U.S., Lueder, V.B. (2016). Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors. Energies, 9, 510. doi: 10.3390/en9070510.

Design and operation of power systems with large amounts of wind power [Elektronnyy resurs]. – Rezhym dostupu: www.vtt.fi/inf/pdf/technology/2016/T268. pdf. – Nazva z ekranu. – Data perehlyadu: 27.01.17.

Enerhetychna stratehiya Ukrayiny na period do 2030 roku [Elektronnyy resurs]. – Rezhym dostupu: zakon1.rada.gov.ua/signal/kr06145a.doc. – Nazva z ekranu. – Data perehlyadu: 27.12.17.

Inzhenernyy analiz v srede SolidWorks Simulation [Elektronnyy resurs]. – Rezhym dostupu: sapr.ru/article/19880. – Nazva z ekranu. – Data perehlyadu: 27.01.17.

Ivashko, O. (2012). Yak pidkoryly viter suchasni Don Kikhoty : v Mykolayiv. obl. zapratsyuvala persha promyslova vitroelektrostantsiya, Uryad. kur'yer, 2, 8.

PSS E Wind and Solar Models [Elektronnyy resurs]// UWIG/EnerNex/DOE Workshop. – Elektron. dani. – NY, 2011. – Rezhym dostupu: http://www.nyiso.com/public/webdocs/markets_operations/services/planning/Documents_and_Resources/Cofeences_and_Workshops/DOE_Wind_Turbine_Plant_Mdlg_wkshop/PSSE_Wind_Solar_Models_Kazachkov.pdf. – Nazva z ekranu. – Data perehlyadu: 07.12.17.

Matskevych, P. (2011). Vykorystannya enerhiyi vitru. EKOinform. 5, 36-38.

Kuzo, I. V., Korendiy V. M. (2010). Obhruntuvannya rozvytku vitroenenerhetychnykh ustanovok maloyi ta nadmaloyi potuzhnosti, Visn. Nats. un-tu "Lviv. politekhnika". Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrol v mashynobuduvanni ta pryladobuduvanni, Lviv, 679, 61-67.

Petrenko, N. (2013). Vetroheneratory maloy moshchnosty. Radyoamator, 7, 40-43.

Sokolovskiy, YU. B., Sokolovskiy, A. YU., Limonov L. G. (2014). Povysheniye effektivnosti vetrovykh energeticheskikh ustanovok. Energosberezheniye. Energetika. Energoaudit, 9, 28-37.

The wind energy fact sheet - Office of Environment and Heritage [Elektronnyy resurs]. – Rezhym dostupu: http://www.environment.nsw.gov.au/resources/households/WindEnergyfactsheet.pdf. – Nazva z ekranu. – Data perehlyadu: 27.01.17.

Alekseyevsky P. D., Andrienko K. O., Turyshev K. O., Pankova O. O. Definition of the working area of the IPPN in the electromechanical system of the VEU with variable speed rotation, Electrical Engineering And Power Engineering, 2017, 1, 79–85. DOI: 10.15588/1607-6761-2017-1-10

Nemudryi I. Yu. Improving the efficiency of converting electricity into wind turbines with aerodynamic animation, Electrical Engineering And Power Engineering, 2014, 1, 79–86. DOI: 10.15588/1607-6761-2014-1-13

Shikhaylov, M. O., Favorskiy, YU. P. (2006). Osobennosti konstruktsiy i ispol'zovaniye vetroenergeticheskikh ustanovok maloy moshchnosti. Elektrik, 1-2, 29-31.

Makarchuk, O., Rusek, A., Shchur, I., Shchur, V. (2015). The electromagnetic transformer of mechanical energy into heat for wind turbine. Przegląd Elektrotechniczny, 91, 1, 179-182.

Wind turbine control [Elektronnyy resurs]. – Rezhym dostupu: https://www3.nd.edu/~tcorke/w.WindTurbineCourse/WindTurbineControl_Presentation.pdf. – Nazva z ekranu. – Data perehlyadu: 27.01.17.

Skrypnyk, O. I. Konoval, V. S. (2013). Matematychna model vitroheneratora typu DFIG dlya analizu stiykosti elektrychnykh system, Naukovi pratsi DonNTU. Seriya: «Elektrotekhnika i enerhetyka», 2 (15), 234-239.

Savaghebi, M., et al. (2012). Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid, Smart Grid, IEEE Transactions on, 3, 797-807.

Vandoorn, T. L., et al. (2012). Analogy Between Conventional Grid Control and Islanded Microgrid Control Based on a Global DC-Link Voltage Droop, Ieee Transactions on Power Delivery, 27, 1405-1414.

Pat. № 62126 Ukrayina, MPK (2011.01) H02J 13/00. Prystriy dlya avtomatychnoho keruvannya elektrospozhyvannyam / P. H. Plyeshkov, I. V. Savelenko, O. I. Sirikov; zayavn. Kirovohradskyy natsionalnyy tekhnichnyy universytet. - №201101588; zayavl. 11.02.2011; opubl. 10.08.2011; Byul. № 15. – 2 s.

Pat. № 109070 Ukrayina, MPK (2016.01) H02J 13/00. Prystriy dlya avtomatychnoho keruvannya elektrospozhyvannyam / V. Y. Lobov, YE. L. Yefimenko, M. P. Tykhanskyy, M. S. Chernyuk; zayavn. DVNZ «Kryvorizkyy natsionalnyy universytet». - №201600998; zayavl. 08.02.2016; opubl. 26.09.2016; Byul. № 18. – 7 s.

Pat. № 105303 Ukrayina, MPK (2016.01) F03D 1/04, F03D 9/25. Sposib otrymannya elektroenerhiyi / V. Y. Lobov, K. V. Lobova; zayavn. DVNZ «Kryvorizkyy natsionalnyy universytet». - № 201509470; zayavl. 01.10.2015; opubl. 10.03.2016, Byul. № 5. – 6 s.

Pat. № 119021 Ukrayina, MPK (2006) F03B 13/00/ Prystriy dlya avtomatychnoho keruvanya elektrospozhyvannyam tekhnolohichnoyi ustanovky / Lobov V.Y., Lobova K.V. Dats A.V.; zayavn. DVNZ «Kryvorizkyy natsionalnyy universytet». - № u201701906; zayavl. 27.02.2017; opubl. 11.09.2017, Byul. №17. – 7 s.

Boyko, E. A., Derynh, I. S., Okhorzyna, T. I. (2006). Aerodinamicheskiy raschet kotel'nykh ustanovok. Krasnoyarsk: KGTU, 71.

Lozhechnikov, V. F., Stopakevich, A. A. (1999). Struktura mnogomernoy matematicheskoy modeli dinamiki barabannogo kotla sredney moshchnosti. Optimizatsiya upravleniya, informatsionnyye sistemy i komp'yuternyye tekhnologii. Trudy Ukrainskoy akademii ekonomicheskoy kibernetiki (Yuzhnyy nauchnyy tsentr). Kiyev-Odessa: ISTS, 1, 2, 167–176.

Alyamovskiy, A. A., Sobachkin, A. A., Odintsov, Ye. V., Kharitonovich, A. I., Ponomarev N. B. (2008). SolidWorks 2007/2008. Komp'yuternoye modelirovaniye v inzhenernoy praktike. SPb. BKHV-Peterburg, 1040.

Published

2018-02-10

How to Cite

Lobov, V. Y., Lobova, K. V., & Dats, A. V. (2018). MANAGEMENT OF GAS-AIR ENERGY INSTALLATION OF INDUSTRIAL ENTERPRISE. Electrical Engineering and Power Engineering, (2), 84–95. https://doi.org/10.15588/1607-6761-2017-2-9