THE ANALYSIS OF THE DYNAMICS OF CHANGE OF CRITERIA USED FOR INTERPRETATION OF DGA RESULTS, IN CORRECT HIGH-VOLTAGE TRANSFORMERS OF NON-GERMETIC EXECUTION

Authors

DOI:

https://doi.org/10.15588/1607-6761-2017-2-8

Keywords:

5 dissolved gas analysis, concentration of gases, slew rate, gas ratio, graphic images, dynamics of change, regression analysis, control levels, diagnostic distance

Abstract

Purpose. Investigate the nature of the dynamics of changes in the criteria used for interpreting the results of DGA, in serviceable high-voltage transformers, leaky performance.

Methodology. Theory of time series, regression analysis, the theory of pattern recognition, the method of reference levels, metric methods of recognition, diagnostics by distance to the standard.

Findings. According to the results of the research, it is established that in normal functioning transformers, the values of all the diagnostic features used to interpret DGA results are changed randomly. Emergency actions on the part of the power grid lead to a short-term occurrence of a systematic component in the dependencies of the concentrations and rates of gas build-up on the duration of operation, and to a short-term stabilization of the values of the gas ratios at the level corresponding to this energy impact, as well as to the similarity of the graphic images.

Originality. The performed analysis showed that in transformers of leaky performance, the appearance and development of a defect is accompanied not only by a change in the numerical values of the diagnostic criteria, which is known and used in the diagnosis, but also to a significant change in the nature of the dependencies of the diagnostic criteria versus time.

Practical value. The obtained results make it possible to detect developing defects in transformers of non-germetic execution at an early stage of their development, even before the values of gas concentrations exceed the boundary values, which will help to avoid the destruction of insulation, and also to recognize the growth of concentrations of gases dissolved in oil, caused by the influence of emergency operation of electrical networks.

Author Biography

O. V. Shutenko, National Technical University "Kharkiv Polytechnic Institute"

Ph.D, Associate professor, Associate professor of the department of «Electric power transmission»

References

IEC Publication 60599, Interpretation of the analysis of gases in transformer and other oil med electrical equipment in &, Geneva, Switzerland, 1999.

IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers, IEEE StandARCd C57.104-2008, Feb.2009.

Dornenburg, E., Strittmater, W. (1974). Monitoring Oil Cooling Transformers by Gas Analysis, Brown Boveri Review, 61, 238-274.

SOU-N EE 46.501: Dіagnostika maslonapovnenogo transformatornogo obladnannja za rezul'tatami hromatografіchnogo analіzu vіl'nih gazіv, vіdіbranih iz gazovogo rele, i gazіv, rozchinenih uі zoljacіjnomu maslі [SOU-N EE 46.501: Diagnosis oil-filled transformer equipment based on the results of chromatographic analysis of free gas with gas relay selected, i gases dissolved in insulating oil]. Kiїv, 2007, 92 p. (in Ukrainian).

RD 153-34.0-46.302-00: Metodicheskie ukazanija po diagnostike razvivajushhihsja defektov transformatornogo oborudovanija po rezul'tatam hromatograficheskogo analiza gazov, rastvorennyh v masle. [RD 153-34.0-46.302-00: Guidelines for the diagnosis of developing defects in transformer equipment based on the results of the chromatographic analysis of gases dissolved in oil]. Moskva: NC JeNAS, 2001, 28 p. (in Russian).

Davidenko I.V. (2009). Opredelenie dopustimyh znachenij kontroliruemyh parametrov maslonapolnennogo oborudovanija na osnove massiva nabljudaemyh dannyh [Determination of admissible values of controlled parameters of oil-filled equipment on the basis of an array of observable data]. Jelektrichestvo, 6, 81–82. (in Russian).

Davidenko I.V. (2009) Kriterii ocenki tehnicheskogo sostojanija maslonapolnennyh vvodov i izmeritel'nyh transformatorov po skorosti rosta koncentracij rastvorennyh gazov. [Criteria for assessing the technical condition of oil-filled bushings and measuring transformers in terms of the growth rate of concentrations of dissolved gases]. Sb. dokladov nauchno-prakticheskoj konferencii specialistov Sibiri i Vostoka “Diagnostika jelektricheskih ustanovok”. Novosibirsk: GCRO, 57-68. (in Russian).

Shutenko O.V. (2017). Opredelenie znachenij granichnyh koncentracij rastvorennyh v masle gazov metodom minimal'nogo riska [Determination of the values of the boundary concentrations of gases dissolved in oil by the minimum risk method]. Jelektrichestvo, 8, 50–60 (in Russian) DOI: 10.2 4160 /0013-5380-2017-8-50-60

Abramov V.B. (2012). Osobennosti kontrolja maslonapolnennogo oborudovanija po rezul'tatam hromatograficheskogo analiza rastvorennyh v masle gazov. [Features of the control of oil-filled equipment based on the results of chromatographic analysis of gases dissolved in oil]. Jelektricheskie seti i sistemy, 4, 77–79. (in Russian).

Davidenko I.V. (2009) Novye sposoby identifikacija vida defektov maslonapolnennyh vvodov [New ways to identify the type of defects of oil-filled bushings]. Izvestija vysshih uchebnyh zavedenij. Problemy Jenergetiki, 1-2, 130–134. (in Russian).

Duval M., Lamarre L. (2014). The duval pentagon - a new complementary tool for the interpretation of dissolved gas analysis in transformers. IEEE Electrical Insulation Magazine, 30, 6, 9-12. DOI: 10.1109/MEI.2014.6943428.

Ahmed M.R., Geliel M.A., Khalil A. (2013) Power transformer fault diagnosis using fuzzy logic technique based on dissolved gas analysis. Control & Automation (MED), 21st Mediterranean Conference on IEEE, 584-589. DOI: 10.1109/MED. 2013.6608781.

Dhote N.K., Helonde J.B. (2012). Diagnosis of power transformer faults based on five fuzzy ratio method. WSEAS Transaction on Power System, 3, 3, 114-125. doi: http: // 10.1109/IPEC.2005.206897.

Liu, C.H., Lin, T.B., Wang, S.Y. (2015). Integrated power transformer diagnosis using hybrid fuzzy dissolved gas analysis. IEEJ Transactions on Electrical and Electronic Engineering, 10, 6, 689-698. DOI: 10.1002/tee.22148.

Siddique M.A.A., Mehfuz S. (2015). Artificial neural networks based incipient fault diagnosis for power transformers. India Conference (INDICON), 2015 Annual IEEE, IEEE, 1-6. DOI: 10.1109/indicon.2015.7443174.

Liu C.H., Yao L.T., Lin, T.B., & Wang, S.Y. (2013). Innovated Fault Diagnosis for Power Transformer Using Hybrid Fuzzy Dissolved Gas Analysis. Applied Mechanics and Materials, 284-287, 1082-1086. DOI: 10.4028/www.scientific.net/AMM.284-287.1082.

Bondarenko V.E., Shutenko O.V. (2017). Razrabotka nechetkoj nejronnoj seti dlja interpretacii rezul'tatov analiza rastvorennyh v masle gazov [Development of fuzzy neural network for interpretation of analysis results of dissolved gases in oil]. Elektrotehnіka і Elektromehanіka, 2, 49–56. (in Russian). DOI: 10.20998/2074-272X.2017.2.08.

Lindgren S.R. Transformer condition assessment experiences using automated on-line dissolved gas analysis. /S.R. Lindgren // CIGRE Reports, A2-202.

Sparling, B.D., Jacques, A. (2007) Power transformer life extension through better monitoring. // Proc. PowerGrid Europe, Spain.

Shutenko O.V. (2010). Metod obnaruzhenija razvivajushhihsja defektov vysokovol'tnyh transformatorov po rezul'tatam hromatograficheskogo analiza rastvorennyh v masle gazov [The method for detecting developing defects of high-voltage transformers based on the results of chromatographic analysis of gases dissolved in oil]. Jelektricheskie seti i sistemy, 3. 38–45. (in Russian).

Shutenko O.V., Abramov V.B. (2017) Ocenka vlijanija dlitel'nosti jekspluatacii na znachenija koncentracij gazov v negermetichnyh transformatorah [Estimation of the influence of operating time on the values of gas concentrations in transformers of non-germetic execution]. Jelektro. Jelektrotehnika, jelektrojenergetika, jelektrotehnicheskaja promyshlennost, 2, 36–45. (in Russian).

Shutenko O.V. (2017). Osobennosti dinamiki izmenenija kriteriev ispol'zuemyh dlja interpretacii rezul'tatov ARG v silovyh transformatorah s raznymi tipami defektov [Features of dynamics of change of criteria used for interpretation of DGA results in power transformers with different types of defects]. Novoe v Rossijskoj jelektrojenergetike, 9, 30-49. (in Russian).

Dzhonson N. (1981). Statistika i planirovanie jeksperimenta v tehnike i nauke.M. Mir, 520.

Birger I.A. (1978). Tehnicheskaja diagnostika. M. Mashinostroenie, 240.

Bojarchukov G.M. [2010]. Prakticheskie problemy ocenki sostojanija vysokovol'tnogo oboru-dovanija po soderzhaniju gazov v transformatornom masle. [Practical problems in assessing the state of high-voltage equipment for the gas content in transformer oil]. Novini energetiki, 7, 23–33. (in Russian).

Malyushevska, A., Dmitrishin, A., & Toporov, S. (2015). Research of influence of heightened temperatures on the operational characteristics of transformer oil t-1500 in film insulation systems. Electrical Engineering And Power Engineering, 1, 21-25. DOI: 10.15588/1607-6761-2015-1-4

Published

2018-02-10

How to Cite

Shutenko, O. V. (2018). THE ANALYSIS OF THE DYNAMICS OF CHANGE OF CRITERIA USED FOR INTERPRETATION OF DGA RESULTS, IN CORRECT HIGH-VOLTAGE TRANSFORMERS OF NON-GERMETIC EXECUTION. Electrical Engineering and Power Engineering, (2), 74–83. https://doi.org/10.15588/1607-6761-2017-2-8