DOI: https://doi.org/10.15588/1607-6761-2017-2-6

APPROACH TO DETERMINATION OF NO LOAD CURRENT OF THREE-PHASE POWER TRANSFORMERS WITH PLANE RODS MAGNETIC SYSTEMS

T. E. Divchuk, D. S. Yarymbash, S. T. Yarymbash, I. M. Kylymnyk, M. I. Kotsur, Yu. S. Bezverkhnia

Abstract


Purpose. Development a new effective approach for determining the open-circuited transformer parameters by implementing a combination of a schematic and spatial mathematical model of nonstationary electromagnetic fields in three-phase transformers, taking into account the constructive structure of the active part, the nonlinearity of the magnetic properties of electrical steels providing high accuracy and computational efficiency.

Methods. The researches were carried out using the methods of the electromagnetic field theory, the theory of electrical circuits, the theory of power transformers, mathematical physics, the finite element method, regression analysis methods.

Results. Theoretical researches of electromagnetic processes based on numerical realization of a three-dimensional mathematical model of a power three-phase transformer in open-circuited operation are carried out. An approach is proposed for improving the field simulation efficiency of the open-circuited operation, which consists in reducing the dimension of the computational domain and the transition to 2D models. It allow reducing the computing resources cost more than 2.8 times, time resources more than 250 times at a weighted average discrepancy of not more than 3.6%. The regularities of the distribution of flux density and the energy of the magnetic field for the active part of the transformer in open-circuited operation are determined. Their quantitative ratio value for the rods of different phases, which determining the ratio of the currents and resistances of the forward and reverse sequences of the transformer are calculated. A new approach to determine the open-circuited parameters of three-phase transformers with flat rod magnetic systems, based on the methods of circuit and 3D modeling, harmonic analysis and symmetrical components is realized. It characterized by high efficiency of numerical realization and accuracy for transient processes in switching moment of the three-phase transformer without loads. System of phase idle currents, characterized by non-sinusoidality and asymmetry, is proved. The harmonic composition of these currents is dominated by the 1st, 5th and 7th harmonics, but the first harmonic component predominates. The parameters of the forward and reverse sequence of the phases of the first harmonic for open-circuited operation, based on symmetrical components method were determinated. A corrective technique, which clarifies the traditional engineering approach, is proposed. The use of parameter correction for the researched ratios of the currents of the forward and reverse sequences will been increase the accuracy of calculation of the idle current by 12-14% and the idle losses by 9-11% in comparison with the generally known engineering design techniques.

Originality. An approach is proposed for improving the efficiency of field simulation of the open-circuited operation, which consists in reducing the dimension of the computational domain and the transition to 2D models. A new approach of determination of the open-circuited parameters of three-phase transformers with flat rod magnetic systems based on the methods of circuit and 3D modeling, harmonic analysis and symmetrical components is realized. It characterized by high efficiency of numerical realization and accuracy for transient processes in switching moment of the three-phase transformer without loads.

Practical value. The approaches and techniques allows to reduce the cost of computing resources by more than 2.8 times, time resources more than 250 times, with a weighted average discrepancy of not more than 3.6%, and increasing the accuracy of calculation of idle currents by 12-14% and losses of idling by 9-11% in comparison with the well-known engineering methods of designing.


Keywords


schematic model; three-dimensional simulation; three-phase transformer; open-circuited operation; finite element method; magnetic field energy; harmonic analysis; non-sinusoidal and asymmetrical currents

References


Tikhomirov, P. M. (1986). Raschet transformatorov. Moscow: Energoatomizdat, 528. (in Russian).

Kulkarni, S. V., Khaparde, S. A. (2004). Transformer Engineering, Design and Practice, New York: Marcel Dekker, 478. (in English).

Pridubkov, P. Y., Khomenko, I. V. (2010). About the charts of substitution of ideal transformer. Energy saving. Power engineering. Energy audit, 2, 55–61 (in Russian).

Roginskaya, L. E., Gusakov, D. V. (2014). Simulation and experimental study of three-phase transformer with twisted tape flat and spatial magnetic cores. Bulletin of the South Ural State University: Power Engineering, 14, 4, 76–83. (in Russian).

Milyih, V. I., Polyakova N. V. (2013) An analysis of harmonic composition the AC magnetic field associated with a rotating rotor turbine generator, at idle speed and short circuit modes, Electrical Engineering And Power Engineering, 2. 5–12. DOI: 10.15588/1607-6761-2013-2-1.

Novash, I. V., Rumiantsev, Yu. V. (2015). Three-phase transformer parameters calculation considering the core saturation for the matlab-simulink transformer model. Energetika, 1, 12–24. (in Russian).

Leon, F., Semlyen, A. (1994). Complete Transformer Model for Electromagnetic Transients. IEEE Transactions on Power Delivery, 9, 1, 231-239. DOI: 10.1109/61.277694.

Majumder, R., Ghosh, S., Mukherjee, R. (2016). Transient Analysis of Single Phase Transformer Using State Model. International Journal of Innovative Research in Science, Engineering and Technology, 5, 3, 3300–3306. DOI: 10.15680/IJIRSET.2016. 0503107.

Kislitsyn, A. L. (2001). Transformers. Ulyanovsk: UlSTU, 76. (in Russian).

Ostrenko, M., Tykhovod, S. (2016). Calculation of losses in elements of construction of power transformers and reactors by finite element method with surface impedance boundary conditions. Electrical Engineering And Power Engineering, 2, 33-42. DOI: 10.15588/1607-6761-2016-2-4. (in Russian).

Tikhovod, S. (2015). Calculation of transients in transformer on the basis of magneto electrical equivalent schemes with the use of tchebyshev’s polynomials. Electrical Engineering And Power Engineering, 2, 5-14. DOI: 10.15588/1607-6761-2015-2-1. (in Russian).

Tykhovod, S. (2015). Improvement of iterative methods of the nonlinear systems solution of state equations of magnetoelectric equivalent schemes. Electrical Engineering And Power Engineering, 1, 46-49. DOI: 10.15588/1607-6761-2015-1-8.

Yarymbash, S., Kylymnyk, I., & Yarymbash, D. (2010). Specific determination of equivalent circuit parameters in the furnace loop of the AC graphitizing furnace. Electrical Engineering And Power Engineering, 2, 36-43. DOI: 10.15588/1607-6761-2010-2-6.

Yarymbash, S., Kylymnyk, I., & Yarymbash, D. (2011). Features of electrothermal conditions of main bus packets of AC graphitizing furnace sections. Electrical Engineering And Power Engineering, 1, 64-69. DOI: 10.15588/1607-6761-2011-1-10.

Yarymbash, D., Yarymbash, S., Divchuk, T., & Kylymnik, I. (2016). Determination features of the power transformer short circuit parameters through field modeling. Electrical Engineering And Power Engineering, 1, 12-17. DOI: 10.15588/1607-6761-2016-1-2 (in Russian).

Yarymbash, D., Yarymbash, S., Divchuk, T., & Kylymnik, I. (2016). The features of magnetic flux distribution of the idling mode of the power transformers. Electrical Engineering And Power Engineering, 2, 5-12. DOI: 10.15588/1607-6761-2016-2-1. (in Russian).

Popov, G. V., Tikhonov, A. I., Klimov, D. V. (2007). The mathematical model of dynamic transformer working conditions on the basis of magnetic field calculations using finite element method. Vestnik IGEU, 3, 11-15. (in Russian).

Ketabi, A., Naseh, M. (2012). Single-phase transformer modeling for inrush currents simulation using differential evolution. European Transaction on Electrical Power, 22, 3, 402–411. DOI: 10.1002/etep.614.

Rashtchi, V., Rahimpour, E., Rezapour, E. M. (2011). Parameter identification of transformer detailed model based on chaos optimisation algorithm. IET Electric Power Applications, 5, 2, 238–246. DOI: 10.1049/ietepa.2010.0147.

Paikov, I. A., Tikhonov, А.I. (2015). Analysis of power transformer electromagnetic calculation models. Vestnik IGEU, 3, 38–43. (in Russian).

Jazebi, S., de León, F., Farazmand, A., Deswal, D. (2013). Dual Reversible Transformer Model for the Calculationof Low-Frequency Transients. IEEE Transactions on Power Delivery, 28, 4, 2509–2517. DOI: 10.1109/TPWRD.2013.2268857.

Yarymbash, D., Kotsur, M., Yarymbash, S., & Kotsur, I. (2017). Features of parameter determination of the induction motor substitution circuit for short-circuit mode. Electrical Engineering And Power Engineering, 1, 24–30. DOI: 10.15588/1607-6761-2017-1-4

Podol'tsev, A. D., Kontorovich, L. N. (2011). Numerical Simulation оf Electric Currents, Magnetic Field and Electrodynamic Forces in Power Transformer at Emergency Operation Using MATLAB/SIMULINK and COMSOL. Technical Electrodynamics, 6, 3–10. (in Russian).

Yarymbash, D. S. (2015). The research of electromagnetic and thermoelectric processes in the AC and DC graphitization furnaces. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, pp. 95–102 (in Russian).

Yarymbash, D. S., Oleinikov, A.M. (2015). On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads. Russian Electrical Engineering, 86, 2, 86–92. DOI: 10.3103/S1068371215020121

Yarymbash, D., Kotsur, M., Yarymbash, S., & Kotsur, I. (2016). Features of three-dimensional simulation of the electromagnetic fields of the asynchronous motors. Electrical Engineering And Power Engineering, 2, 43-50. DOI: 10.15588/1607-6761-2016-2-5

Slavutskiy, A. (2015). Accounting the residual magnetization in the transformer for the modeling of transients. Vestnik Chuvashskogo universiteta, 1, 122-130. (in Russian).

Cundeva, S. (2008). A Transformer Model Based on the Jiles-Atherton Theory of Ferromagnetic Hysteresis. Serbian Journal of Electrical engineering, 5, 1, 21–30. DOI: 10.2298/SJEE0801021C

Wagner, B., Renhart, W., Magele, Ch. (2008). Error Evaluation of Surface Impedance Boundary Conditions With Magnetic Vector Potential Formulation on a Cylindrical Test Problem. IEEE Trans. on Magn, 44, 6, 734–737. DOI: 10.1109/TMAG.2007.915979

Ida, N., Lemenach, Y., Henneron, T. (2011). High Order Surface Impedance Boundary Conditions with the A- Formulation. FACTA UNIVERSITATIS, 24, 2, 147–155.

Leytes, L. V., Pintsov, A. M. (1974). Skhemy zameshcheniya mnogoobmotochnykh transformatorov, Moscow: Energiya, 192. (in Russian)

Leytes, L. V. (1981). Elektromagnitnyye raschoty transformatorov i reaktorov, Moscow: Energiya, 392 (in Russian)

Molotilov, B. V., Mironov, L. V., Petrenko, A. G., and et al. (1989). Cold-rolled electrical steel: Reference, ed., Moscow: Metallurgy, 167 (in Russian).

Tang, Qi, Guo, S., Wang, Z. (2015). Magnetic flux distribution in power transformer core with mitred joints. Journal of Applied Physics, 117, 17, 17D522-1–17D522-4. DOI: 10.1063/1.4919119.

Strac, L., Zarko, D. (2015). Determination of electromagnetic properties of steel for prediction of stray losses in power transformers. Turkish Journal of Electrical Engineering & Computer Sciences, 23, 1357–1371. DOI: 10.3906/elk-1301-31

Paoli, G., Biro, O., Buchgraber, G. (1998). Complex representation in nonlinear time harmonic eddy current problems. IEEE Trans. Magn., 34,5, 2625–2628. DOI: 10.1109/20.717607

Yarymbash, D., Kilimnik, I., & Yarymbash, S. (2015). The dynamic adaptation of circuit models of short-circuit. Electrical Engineering And Power Engineering, 2, 65–70. DOI: 10.15588/1607-6761-2015-2-9.


GOST Style Citations


1. Тихомиров П. М. Расчет трансформаторов [Текст] / П. М. Тихомиров. – М.: Энергоатомиздат, 1986. – 528 с.

2. Kulkarni S.V. Transformer Engineering: Design and Practice [Text] / S.V. Kulkarni, S.A. Khaparde. – New York: Marcel Dekker, 2004. – 478 p.

3. Придубков П. Я. Математичне моделювання електромагнітних процесів ідеального трансформатора [Текст] / П. Я. Придубков, І. В. Хоменко // Энергосбережение. Энергетика. Энергоаудит – Харьков. – 2010. – №2.– С. 55–61.

4. Рогинская, Л. Э. Имитационное моделирование и экспериментальное исследование трехфазного трансформатора с витыми ленточными плоскими и пространственными магнитопроводами [Текст] / Л. Э. Рогинская, Д. В. Гусаков // Вестник ЮУр-ГУ. Серия Энергетика – 2014. – Т. 14. – № 4. – С. 76–83.

5. Милых В. И. Анализ гармонического состава переменного магнитного поля, связанного с вращающимся ротором турбогенератора, в режиме холостого хода и короткого замыкания [Текст] / В. И. Милых, Н. В. Полякова // Электротехника и электроэнергетика. – 2013. – №2. – С. 5 – 12. DOI: 10.15588/1607-6761-2013-2-1.

6. Новаш И. В. Расчет параметров модели трехфазного трансформатора из библиотеки Matlab-Simulink с учетом насыщения магнитопровода [Текст] / И. В. Новаш, Ю. В. Румянцев // Энергетика. Изв. высш. учеб. заведений и энерг. объедине-ний СНГ – 2015. – №1. – С. 12–24.

7. de Leon F. Complete Transformer Model for Electromagnetic Transients [Text] / F. de Leon, A. Semlyen // IEEE Transactions on Power Delivery – 1994. – Vol. 9. – No. 1. – P. 231–239. DOI: 10.1109/61.277694.

8. Majumder R. Transient Analysis of Single Phase Transformer Using State Model [Text] / R. Majumder, S. Ghosh, R. Mukherjee // International Journal of Innovative Research in Science, Engineering and Technology – 2016. – Vol. 5. – No 3, P. 3300–3306. DOI:10.15680/IJIRSET.2016.0503107.

9. Кислицин А.Л. Трансформаторы [Текст] / А.Л. Кислицин. – Ульяновск: УлГТУ, 2001. – 76 с.

10. Остренко М.В. Расчет потерь в элементах конструкции силовых трансформаторов и реакторов методом конечных элементов с граничными условиями импедансного типа [Текст] / М.В. Остренко, С.М. Тиховод // Электротехника и электроэнергетика – 2016. – №2. – С. 33–42. DOI: 10.15588/1607-6761-2016-2-4.

11. Тиховод С.М. Расчет переходных процессов в трансформаторах на основе магнитоэлектрических схем замещения с использованием полиномов Чебышёва [Текст] / С.М. Тиховод // Электротехника и электроэнергетика – 2015. – №2 – С. 5–14. DOI: 10.15588/1607-6761-2015-2-1.

12. Тиховод С.М. Усовершенствование итерационных методов решения систем нелинейных уравнений состояния магнитоэлектрических схем замещения [Текст] / С.М. Тиховод // Электротехника и электроэнергетика – 2015. – № 1. – С. 46–49. DOI: 10.15588/1607-6761-2015-1-8.

13. Ярымбаш Д.С. Особенности определения параметров электрической схемы замещения печной петли печи графитации переменного тока [Текст] / Д.С. Ярымбаш, И.М. Килимник, С.Т. Ярымбаш // Электротехника и электроэнергетика –2010.– № 2. – С. 36–43. DOI: 10.15588/1607-6761-2010-2-6.

14. Ярымбаш Д.С. Особенности электротепловых режимов главных шинных пакетов секций печей графитации переменного тока [Текст] / Д.С. Ярымбаш, И.М. Килимник, С.Т. Ярымбаш // Электротехника и электроэнергетика – 2011. – № 1. – С. 64–69. DOI: 10.15588/1607-6761-2011-1-10.

15. Яримбаш Д. С. Особливості визначення параметрів короткого замикання силових трансформаторів засобами польового моделювання [Текст] / Д. С. Яримбаш, С. Т. Яримбаш, Т. Є. Дівчук, І. М. Килимник // Електротехніка та електроенергетика – 2016. – № 1. – С. 12–17. DOI: 10.15588/1607-6761-2016-1-2

16. Яримбаш Д. С. Особливості розподілення магнітних потоків у режимі неробочого ходу силових трансформаторів [Текст] / Д. С. Яримбаш, С. Т. Яримбаш, Т. Є. Дівчук, І. М. Килимник // Електротехніка та електроенергетика – 2016. – № 2. – С. 5–12. DOI: 10.15588/1607-6761-2016-2-1.

17. Попов Г.В. Математическая модель динамических режимов работы трансформатора на основе расчетов магнитного поля методом конечных элементов [Текст] / Г.В. Попов, А.И. Тихонов, Д.В. Климов // Вестник ИГЭУ – 2007. – № 3. – С. 11–15.

18. Ketabi A. Single-phase transformer modeling for inrush currents simulation using differential evolution [Text] / A. Ketabi, M. Naseh // European Transactions on Electrical Power – 2012. – Vol. 22, Iss. 3, P. 402–411. DOI: 10.1002/etep.614.

19. Rashtchi V. Parameter identification of transformer detailed model based on chaos optimisation algorithm [Text] / V. Rashtchi, E. Rahimpour, E. M. Rezapour // IET Electric Power Applications – 2011. – Vol 5, No. 2. – P. 238–246. DOI: 10.1049/iet-epa.2010.0147.

20. Пайков И.А. Анализ моделей для электромагнитного расчета силовых трансформаторов / И.А. Пайков, А.И. Тихонов // Вестник ИГЭУ – 2015. – №3. – С. 38–43.

21. Jazebi S. Dual Reversible Transformer Model for the Calculation of Low-Frequency Transients [Text] / S. Jazebi, F. de León, A. Farazmand, D. Deswal // IEEE Transactions on Power Delivery – 2013. – Vol. 28, No. 4. – P. 2509–2517. DOI: 10.1109/TPWRD.2013.2268857.

22. Ярымбаш Д. С. Особенности определения параметров схемы замещения асинхронного двигателя для режима короткого замыкания [Текст] / Д. С. Ярымбаш, М. И. Коцур, С. Т. Ярымбаш, И. М. Коцур // Электротехника и электроэнергетика – 2017. – № 1. – С. 24-30. DOI: 10.15588/1607-6761-2017-1-4.

23. Подольцев А.Д. Численный расчет электрических токов, магнитного поля и электродинамических сил в силовом трансформаторе в аварийных режимах с использованием MATLAB/SIMULINK и COMSOL [Текст] / А.Д. Подольцев, Л.Н. Конторович // Техническая электродинамика – 2011. – № 6. – С. 3–10.

24. Ярымбаш Д.С. Исследование электромагнитных и термоэлектрических процессов в печах графитации переменного и постоянного тока [Текст] / Д.С. Ярымбаш // Вестник НГУ – 2015. – Вып. 3. – С. 95–102.

25. Yarymbash D. S. On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads / D. S. Yarymbash, A. M. Oleinikov // Russian Electrical Engineering – 2015. – Vol. 86, Iss. 2. – P. 86–92. DOI: 10.3103/S1068371215020121

26. Ярымбаш Д. С. Особенности трехмерного моделирования электромагнитных полей асинхронного двигателя [Текст] / Д. С. Ярымбаш, М. И. Коцур, С. Т. Ярымбаш, И. М. Коцур // Электротехника и электроэнергетика – 2016. – № 2. – С. 43–50. DOI: 10.15588/1607-6761-2016-2-5.

27. Славутский А.Л. Учет остаточной намагничен-ности в трансформаторе при моделировании переходных процессов [Текст] / А.Л. Славутский // Вестник Чувашского университета – 2015. – №1. – С. 122–130.

28. Cundeva S. A Transformer Model Based on the Jiles-Atherton Theory of Ferromagnetic Hysteresis [Text] / S. Cundeva // Serbian Journal of Electrical engineering – 2008. – Vol. 5, No. 1. – P. 21–30. DOI: 10.2298/SJEE0801021C

29. Wagner B. Error Evaluation of Surface Impedance Boundary Conditions With Magnetic Vector Potential Formulation on a Cylindrical Test Problem [Text] / B. Wagner, W. Renhart, Ch. Magele // IEEE Trans. on Magn – 2008. – Vol. 44, No 6. – P. 734–737. DOI: 10.1109/TMAG.2007.915979

30. Ida N. High Order Surface Impedance Boundary Conditions with the A-Formulation [Text] / N. Ida, Y. Lemenach, T. Henneron // FACTA UNIVERSITATIS – 2011. – Vol. 24, No 2. – P. 147–155, 2011.

31. Лейтес Л.В. Схемы замещения многообмоточных трансформаторов [Текст] / Л.В. Лейтес, А.М. Пинцов. – М.: Энергия, 1974. – 192 с.

32. Лейтес Л.В. Электромагнитные расчеты трансформаторов и реакторов [Текст] / Л.В. Лейтес. – М.: Энергия, 1981. – 392 с.

33. Холоднокатаные электротехнические стали [Текст]: справочник / Б.В. Молотилов [и др.]; ред. Б.В. Молотилов; рец. Б.Г. Лившиц. – Москва: Металлургия, 1989. – 167 с.

34. Tang Q. Magnetic flux distribution in power transformer core with mitred joints [Text] / Q. Tang, Sh. Guo, Zh. Wang // Journal of Applied Physics – 2015. – Vol. 117, Iss. 17, – P. 17D522-1–17D522-4. DOI: 10.1063/1.4919119.

35. Strac L. Determination of electromagnetic properties of steel for prediction of stray losses in power transformers / L. Strac, D. Zarko // Turkish Journal of Electrical Engineering & Computer Sciences – 2015. – V. 23. – P. 1357–1371. DOI: 10.3906/elk-1301-31.

36. Paoli G. Complex representation in nonlinear time harmonic eddy current problems [Text] / G. Paoli, O. Biro, G. Buchgraber // IEEE Transactions on Magnetics – 1998. – Vol. 34, No.5. – P. 2625–2628. DOI: 10.1109/20.717607.

37. Ярымбаш Д. С. Динамическая адаптация схемных моделей короткой сети [Текст] / Д. С. Ярымбаш, И. М. Килимник, С. Т. Ярымбаш // Электротехника и электроэнергетика – 2015. – № 2. – С. 65–70. DOI: 10.15588/1607-6761-2015-2-9.



Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2018 T. E. Divchuk, D. S. Yarymbash, S. T. Yarymbash, I. M. Kylymnyk, M. I. Kotsur, Yu. Bezverkhnia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Address of the journal editorial office:

Editorial office of the the science journal "Electrical Engineering and Power Engineering" ("Electrotechnics and Electroenergetics")

Zaporozhye National Technical University, 

 Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 

Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

E-mail: rvv@zntu.edu.ua


Reference to the journal is obligatory in the cases of complete or partial use of its materials.