THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE MAGNETOELECTRIC SYSTEM, WHICH RECOGNIZES THE LARGE OF SUNS OF A SINGLE-SPIRAL CLASSIFIER

Authors

DOI:

https://doi.org/10.15588/1607-6761-2017-2-4

Keywords:

magnetoelectric system, induction winding, Hall converter, classifier sands, weighted average particle size

Abstract

Purpose. The aim of the work is to create a magnetoelectric system with permanent magnets, which perceives the coarse size of the sand of a single-helix classifier, by establishing the connection of the output signal with the measured quantity, eliminating the effect of disturbances on the result and justifying its parameters.

Methodology. The studies carried out on the basis of the use of methods of the theory of electrical engineering, magnetic systems with permanent magnets, galvanomagnetic transducers, probabilities, random processes, statistics, regression analysis, sensitivity, differential calculus, rock magnetism, determination of the physical properties of matrix material when impurities are added to it with others explicitly expressed properties, the classification of enrichment products.

Findings. The process of the rate of change of the volume of solid in a controlled volume of space through which the sand material moves is described mathematically. The limits of the volume of the controlled volume at which the sensitivity is still sufficient are determined. The theoretical dependences of the rate of change of the solid volume in the controlled volume on the size of the sands at different speeds are obtained. It is established that the state of the controlled volume is best estimated by the magnetic method. A magnetoelectric system with permanent magnets has been developed, which has optimal parameter values and an induction winding containing up to 25,000 turns, and in one of the pole pieces of which a Hall transducer is installed in a continuous slot. The magnetic system near the air gap creates in the material a magnetic field 5 × 20 × 60 mm in size with almost the same intensity. Ed. The magnetoelectric system practically changes linearly with the increase in the size of the material. It depends on the content of magnetic iron in the solid, which is compensated by the use of the signal from the Hall converter. Correlation connection between the induced emf. and the size of the sand is close, in character corresponds to the theoretical dependence.

Originality.  The magnetoelectric system for controlling the weighted average size of the sands of a single-helix classifier was created for the first time and allows to solve the actual problem of automation of the first stages of ore crushing. For the first time, a mathematical relationship between the rate of change in the volume of solid in the controlled volume of the flow and the size of the sands, which is the basis for the creation of a magnetoelectric system, is obtained. The magnetoelectric system is improved by the execution of structural elements that create a magnetic field of 5 × 20 × 60 mm in size and the introduction of a Hall converter that reacts to the content of magnetic iron in a solid and allows to increase the accuracy of the measurement.

Practical value.  The practical value of the work lies in the fact that the magnetoelectric system is grounded, which makes it possible to develop a means of measuring the weighted average size of sands in industrial conditions and by automating to affect the reduction of the cost of iron ore concentrate.

Author Biographies

A. N. Matsui, Central Ukrainian National Technical University

Ph.D, associate professor, associate professor of department of automation of production processes

V. A. Kondratets, Central Ukrainian National Technical University

Dr.Sc., professor, professor of department of automation of production processes

References

Trop, A. E., Kozin, V. Z., Prokof'ev, E. V. (1987). Avtomatizatsiya obogatitel'nykh fabric. M. Nedra, 303.

Evans, C. L., Napier-Munn, T. J. (2013). Estimating error in measurements of mineral grain size distribution. Minerals Engineering, 52, 198-203. doi: https://doi.org/10.1016/ j.mineng.2013.09.005.

Mariano, R. A., Evans, C. L. (2015). Error analysis in ore particle composition distribution measurements. Minerals Engineering, 82, 36-44. doi: https://doi.org/ 10.1016/ j.mineng.2015.06.001.

Zuo, W., Shi, F. (2016). Ore impact breakage characterisation using mixed particles in wide size range. Minerals Engineering, 86, 96-103. doi: https://doi.org/10.1016/j.mineng.2015. 12.007.

Topchaev, V. P., Topchaev, A. V., Lanidus, M. V. (2005). Novyi potochnyi granulometr PIK-074P dlya avtomaticheskogo kontrolya granulometricheskogo sostava pul'py [New flow granulometer PIK-074P for automatic control of granulometric composition of pulp]. Tsvetnye metally, 10, 25 – 27. (in Russian).

Maryuta, A. N., Davidkovich, A. S., Gulenko, T. I., Kondratets, V. A. (1972) Avtomatizatsiya protsessov obogashcheniya rud. K. Tekhnіka, 140.

Kornilin, D. V., Kudryavtsev, I. A., Logvinov, L. M., Voronov, A. F. (2010). Opredelenie parametrov dispers-noi fazy datchikom vstroennogo kontrolya gidro-sistem na osnove KMDP-matritsy [Determination of the parameters of the dispersed phase of the sensor of integrated hydraulic system monitoring based on the CMDD matrix]. Pribory, 5, 35 – 41. (in Russian).

Zapata-Massot, C., Frances, Ch., Le Bolay, N. (2004). On the use of scanning electron microscopy for the modelling of co-grinding kinetics in a tumbling ball mill. Powder Technology, 143-144, 215-229. doi: https://doi.org/10.1016/j.powtec. 2004.04.016.

Morkun, V. S., Porkuyan, O. V. (2006). Ul'trazvukovye poverkhnostnye volny Lemba i Lyava v izmeritel'nykh sistemakh. Krivoi Rog. KTU, 261.

Kongas, M., Salokheimo, K. (2010). Novoe pokolenie analizatorov razmera chastits v pul'pe [A new generation of particle size analyzers in pulp]. Tsvetnye metally, 2, 82 – 88. (in Russian).

Evstyugin, S. N., Starodumov, A. V., Kruglov, V. N. (2003). Primenenie sistemy "Granulometr" dlya nepreryvnogo beskontaktnogo opredeleniya granulometricheskogo sostava kuskovykh materialov [Application of the "Granulometer" system for continuous non-contact determination of the granulometric composition of lump materials]. Stal', 1, 36 – 38. (in Russian).

Francini, F., Iorio-Fili, D., Longobardi, G. (1982). Electro-optical granulometer for measurements of flowing particles. Optics & Laser Technology, 14, 2, 81-85. doi: https://doi.org/10.1016/0030-3992(82) 90006-8.

Ponsa, M. N., Viviera, H., Belarouia, K., Bernard-Michela, B., Cordierb, F., Oulhanab, D., Doddsb, J. A. (1999). Particle morphology: from visualisation to measurement. Powder Technology, 103, 1, 44-57. doi: https://doi.org/ 10.1016/S0032-5910(99)00023-6.

LabVIEW for Maschine Vision. http://sine.ni.com/nips/cds/view/p/land/en/nіd/10419

Sistema opredeleniya krupnosti aglomerata. http://www.scma.com.ua/ Ru/Products/soka

Mwanga, A., Parian, M., Lamberg, P., Rosenkranz, J. (2017). Comminution modeling using mineralogical properties of iron ores. Minerals Engineering, 111, 182-197. doi: https://doi.org/10.1016/ j.mineng. 2017.06.017.

Gulenko, T. I., Kaul', B. I., Lozovoi, P. G., Kondratets, V. A., Goncharov, N. V., Nosov, G. R. (1967) Laboratornye issledovaniya magnitoinduktsionnogo granulometra [Laboratory investigations of magnetic induction granulometer]. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal, 7, 157 – 163. (in Russian).

Gulenko, T. I., Lepekha, A. F., Knyazhitskii, Yu. A. (1968). Opytnaya ekspluatatsiya magnitoinduktsionnogo granulometra [Experimental operation of magnetic induction granulometer]. Gornyi zhurnal, 9, 51 – 53. (in Russian).

Kondratets, V. A., Gulenko, T. I. (1971). Izmerenie raskhoda ferromagnitnoi pul'py [Measurement of the flow rate of the ferromagnetic pulp]. Izmeritel'naya tekhnika, 10, 91 – 92. (in Russian).

Kremlevskii, P. P. (1975). Raskhodomery i schetchiki kolichestva. L. Mashinostroenie, 776.

Kondratec', V. O. (2013) Doslidzhennja vypadkovogo procesu navantazhennja opornogo rolyka konvejera v umovah oserednenogo potoku rudy [Investigation of a random load process of a conveyor support roller under conditions of averaged ore flow]. Zb. nauk. prac' Nacional'nogo girnychogo universytetu, 43, 79 – 88. (in Ukrainian).

Rzhevskij, V. V., Novik, G. Ja. (2010). Osnovy fiziki gornyh porod. M. Librokom, 360.

Vejnberg, A. K. (1966). Magnitnaja pronicaemost', jelektroprovodnost', dijelektricheskaja pronicaemost' i teploprovodnost' sredy, soderzhashhej sfericheskie i jellipsoidal'nye vkljuchenija [Magnetic permeability, electrical conductivity, dielectric permeability and thermal conductivity of a medium containing spherical and ellipsoidal inclusions]. Doklady AN SSSR, 169, 3, 543 – 546. (in Russian).

Vlasov, A. Ja., Kovalenko, G. V. (1964). Magnitnaja anizotropija osadochnyh porod [Magnetic anisotropy of sedimentary rocks]. Izvestija AN SSSR. Serija geofizicheskaja, 12, 1789 – 1800. (in Russian).

Nagata, T. (1965). Magnetizm gornyh porod. M. Mir, 348.

Spica, A. (2013). Jekspluatacionnye faktory, vlijajushhie na rabotu sistem nepreryvnogo kontrolja izoljacii transformatornogo oborudovanija [Operational factors affecting the performance of continuous monitoring system of transformer equipment insulation]. Elektrotehnіka ta elektroenergetika, 1, 41 – 47. (in Russian) doi: http://dx.doi.org/10.15588/ 1607-6761-2013-1-7.

Andrienko, P., Sakhno, A., Konogray, S., Spitsa, A., & Skrupskaya, L. (2014). Osobennosti monitoringa tehnicheskogo sostojanija osnovnoj izoljacii visokovol'tnyh vvodov i transformatorov toka [Characteristics of monitoring condition of main insulation of high-voltage bushings and current transformers]. Elektrotehnіka ta elektroenergetika, 1, 43 – 48. (in Russian) doi: http://dx.doi.org/10.15588/1607- 6761-2014-1-7.

Published

2018-02-10

How to Cite

Matsui, A. N., & Kondratets, V. A. (2018). THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE MAGNETOELECTRIC SYSTEM, WHICH RECOGNIZES THE LARGE OF SUNS OF A SINGLE-SPIRAL CLASSIFIER. Electrical Engineering and Power Engineering, (2), 38–49. https://doi.org/10.15588/1607-6761-2017-2-4