ТОПОЛОГИЧЕСКИЕ МОДЕЛИ ТРЕХФАЗНОГО ПЯТИСТЕРЖНЕВОГО ТРАНСФОРМАТОРА

S. E. Zirka, Y. I. Moroz, C. M. Arturi, D. Bonnman

Аннотация


Цель работы. Показать, что на основе топологических моделей трехфазного пятистержневого трансформатора возможно корректно воспроизводить его работу в режимах больших индукций в сердечнике. В качестве практически важного примера, анализируется временной отклик трансформатора на воздействие геомагнитно-индуцированных токов (ГИТ). Результаты моделирования сравниваются с результатами натурного эксперимента.

Методы исследования. Магнитная модель трансформатора, учитывающая геометрию сердечника и обмоток, преобразуется в дуальную электрическую схему замещения, переходный процесс в который рассчитывается в среде EMTP-ATP. Полученные результаты демонстрируют необходимость учета сопротивлений прямой и нулевой последовательности энергосистемы.

Полученные результаты. Разработана адекватная простая и надежная модель пятистержневого трансформатора. Установлено, что присутствие бака трансформатора может быть учтено посредством линейных индуктивностей, представляющих пути магнитных потоков вне сердечника (потоков от ярма к ярму). Точность представленного моделирования процессов в трансформаторе при наличии ГИТ превышает точность известных моделей трехфазных пятистержневых трансформаторов. Адекватность модели подтверждается близостью предсказанных действующих значений и кривых фазных токов, а также потребляемой реактивной мощности, к соответствующим величинам, измененным в эксперименте, проведенном на двух 400 MBA трансформаторах, которые соединены параллельно к энергосистеме напряжением 410 кВ и последовательно по отношению к источнику постоянного напряжения.

Научная новизна. Разработана упрощенная безгистерезисная модель пятистержневого трансформатора, которая воспроизводит поведение трансформатора с той же высокой точностью, что и гистерезисная модель, отличающаяся тем, что выбор безгистерезисной модели научно обоснован.

Практическая ценность. Практическая ценность и значение статьи обусловлено тем, что предложенная модель трансформатора является простым и надежным инструментом для исследования электрических сетей. Статья предостерегает от использования излишне усложненных моделей, параметры которых не могут быть определены в эксперименте или посредством вычислений.


Ключевые слова


пятистержневой трансформатор; топологические модели; переходный режим; магнитные потоки вне сер-дечника; формы токов; реактивная мощность; экспериментальная проверка; последовательно-параллельное включение трансформаторов

Полный текст:

PDF (English)

Литература


Arturi, C. M. (1991). Transient simulation of a three phase five limb step-up transformer following an out-of-phase synchronization. IEEE Trans. Power Delivery, 6, 1, 196 – 207. DOI: 10.1109/61.103738.

Chen, X., Venkata, S.S. (1997). A three-phase three-winding core-type transformer model for low-frequency transient studies. IEEE Trans. Power Delivery, 12, 2, 775 – 782. DOI: 0885-8977/97/$10.00.

Mork, B. A., Gonzalez, F., Ishchenko, D., Stuehm, D. L., Mitra J. (2007). Hybrid transformer model for transient simulation – Part I: Development and parameters. IEEE Trans. Power Delivery, 22, 1, 248 – 255. DOI: 10.1109/TPWRD.2006.883000.

Zirka, S. E., Moroz, Y. I., Arturi, C. M. (2014). Accounting for the influence of the tank walls in the zero-sequence topological model of a three-phase, three-limb transformer. IEEE Trans. Power Delivery, 29, 5, 2172–2179. DOI: 10.1109/ TPWRD.2014.2307117.

Zirka, S. E., Moroz, Y.I., Høidalen, H. Kr., Lotfi, A., Chiesa, N., Arturi, C. M. (2017). Practical experience in using a topological model of a core-type three-phase transformer – No-load and inrush conditions. IEEE Trans. Power Delivery, 32, 4, 2081–2090. DOI: 10.1109/TPWRD. 2016.2618900.

Tikhovod, S.M. (2014). Modelirovanie perehodnyh processov v transformatorah na osnove magnitojelektricheskih shem zameshhenija. [Modeling transformer transients using magnitoelectric equivalent schemes]. Elektrotehnika i elektroenergetika, 2, 59-68, (in Russian).

Lahtinen, M., Elovaara, J. (2002). GIC occurrences and GIC test for 400 kV system transformer. IEEE Trans. Power Delivery, 17, 2, 555–561. DOI: 0885-8977(02)02750-4.

Rezaei-Zare, A. Marti, L., Narang, A., Yan, A. (2016). Analysis of three-phase transformer response due to GIC using an advanced duality-based model. IEEE Trans. Power Delivery, 31, 5, 2342–2350. DOI: 10.1109/TPWRD. 2015.2505499.

Rezaei-Zare, A. (2015). Enhanced transformer model for low- and mid-frequency transients–Part I: Model development. IEEE Trans. Power Delivery, 30, 1, 307–315. DOI: 10.1109/TPWRD.2014.2347930.

Rezaei-Zare, A. (2015). Enhanced transformer model for low- and mid-frequency transients–Part II: Validation and simulation results. IEEE Trans. Power Delivery, 30, 1, 316–325. DOI: 10.1109/TPWRD.2014.2347934.

Lambert, M., Mahseredjian, J. (2013) Electromagnetic transient type transformer models for geomagnetically-induced current (GIC) studies. EPRI Report 3002000832.

Zirka, S. E., Moroz, Y. I., Rahimpour, E. (2017). Towards a transformer transient model as a lumped-distributed parameter system. Compel, 36, 3, 741–750. DOI: 10.1108/COMPEL-09-2016-0389.

Zirka, S. E., Moroz, Y. I., Chiesa, N., Harrison, R. G., Høidalen, H. Kr. (2015). Implementation of inverse hysteresis model into EMTP – Part II: Dynamic model. IEEE Trans. Power Delivery, 30, 5, 2233–2241. DOI: 10.1109/TPWRD. 2015.2416199.

Moroz, Y. I., Zirka, S. E. (2014). Inverse models of magnetic hysteresis, [Online]. Available: https://sites.google.com/site/inverse-hysteresismodel.

Alternative Transients Program, ATP-EMTP, (2016). [Online]. Available: http://www.eeug.org.

Tleis, N. D. (2008). Power systems modelling and fault analysis: Theory and practice. New York: Newnes/Elsevier, 625.

Evdokunin, G. A. (2016). Jelektricheskie sistemy i seti [Electrical systems and networks]. Saint Petersburg: Rodnaya Ladoga, 384, (in Russian).


Пристатейная библиография ГОСТ






DOI: https://doi.org/10.15588/1607-6761-2017-2-2

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM

Ссылки

  • На текущий момент ссылки отсутствуют.


Copyright (c) 2018 Zirka S. E., Moroz Y. I., Arturi C. M., Bonnman D.

Creative Commons License
Эта работа лицензирована Creative Commons Attribution 4.0 International License.

Адрес редакции журнала:
Редакция журнала «E&E», Запорожский национальный технический университет, 
ул. Жуковского, 64, г. Запорожье, 69063, Украина. 
Телефон: 0 (61) 769-82-96 – редакционно-издательский отдел
E-mail: rvv@zntu.edu.ua