SCHEME-FIELD MODELING OF THERMAL PROCESSES IN INDUCTION MOTORS

Authors

  • D. O. Litvinov Zaporozhye National Technical University, Ukraine https://orcid.org/0000-0002-4043-954X
  • O. O. Shlyanin Zaporozhye National Technical University, Ukraine https://orcid.org/0000-0002-4393-9881
  • Т. V. Bondarchuk Zaporozhye National Technical University, Ukraine
  • O. V. Stremydlovska Zaporozhye National Technical University, Ukraine
  • Riham Matar Zaporozhye National Technical University, Ukraine

DOI:

https://doi.org/10.15588/1607-6761-2017-1-9

Keywords:

asynchronous motor, thermal replacement circuit, thermal conductivity, thermal resistance, integral method, finite element method

Abstract

Purpose. Development of a new approach for increasing thermal calculations accuracy by thermal field and scheme combinating simulation in determining the effective heat conductivities in details and nodes of induction motor.
Research methods: the heat conductivity theory, heat transfer, thermal equivalent circuit, thermal potentials, thermal field simulation, finite elements methods.
The obtained results. The integrated method for conversion data of field modeling into thermal circuit model parameters is researched, which significantly reduces influence of nodes quantity of the thermal circuit on the accuracy of parameters determination by matrix invariancy of geometrical conductivities to temperature changes of heat conductivity values of induction motors constructional and active materials. By means of this method, for discretization induction motor spatial model on separate components, it is possible in advance to determine the components of matrix conductivities and to prevent the degeneration of this matrix in the scheme model.
Scientific novelty. A new method of scheme model conversion with the use of an integral thermal potential is researched, which allows to pass from heat resistances, as a parameters of thermal equivalent circuit, to geometric conductivities of this scheme. It has been proved that by processing the data arrays of field modeling for determination geometric conductivities of thermal equivalent circuit, it is possible to prevent degeneration of matrix conductivities for the stationary thermal mode of induction motor in short-circuit mode, having provided reduction of nodes quantity and increase in computing efficiency and accuracy.
Practical significance. The integrated method for converting data of induction motor field modeling into thermal model parameters allows at increase in the number of nodes in thermal scheme from one to ten to reduce the average value of a relative error from 9,2% to 2,42%, what completely meets requirements at designing of induction motors, and also for imitating modeling of thermal processes dynamics at the variable operating conditions.

Author Biographies

D. O. Litvinov, Zaporozhye National Technical University

Senior Lecturer of the Electrical Machines Department

O. O. Shlyanin, Zaporozhye National Technical University

Senior Lecturer of the Electrical Machines Department

Т. V. Bondarchuk, Zaporozhye National Technical University

Master of the Electrical Machines Department

O. V. Stremydlovska, Zaporozhye National Technical University

Master of the Electrical Machines Department

Riham Matar, Zaporozhye National Technical University

Master of the Electrical Machines Department

References

Petrenko, A. N., Tanyanskiy, V. Ye., Petrenko, N.YA. (2012). Issledovaniye temperaturnogo polya i teplovykh potokov chastotno-upravlyayemogo asinkhronnogo dvigatelya. Visnik NTU "KHPI", 49(955), 61–65.

Kotsur, M. I. (2014) Osobennosti udarnogo teplovogo vozdeystviya na asinkhronnyy dvigatel' s modifitsirovannoy sistemoy impul'snogo regulirovaniya v usloviyakh chastykh puskov. Elektrotehnika i elektroenergetika., 1, 32–36. doi: http://dx.doi.org/10.15588/1607-6761-2014-1-5.

Filippov, I. F. (1986). Teploobmen v elektricheskikh mashinakh. L.: Energoatomizdat, 256.

Sipaylov, G. A., Sannikov, D. I., Zhadan, V. A. (1989). Teplovyye, gidravlicheskiye i aerodinamichesiye raschety v elektricheskikh mashinakh. M.: Vyssh. shk., 239.

Zaliznyy, D. I., Shirokov, O. G., Popichev, V. V. (2015). Adaptivnaya matematicheskaya model' teplovykh protsessov asinkhronnogo dvigatelya s korotkozamknutym rotorom. Vestnik GGTU im. P. O. Sukhogo, 1, 30–43.

Wallmark, O. (2012) Analysis of Electrical Machines. Royal Institute of Technology Stockholm. Sweden.

Ostashevskiy, N. A., Shayda, V. P. (2010). Matematicheskaya model' teplovogo sostoyaniya chastotno-upravlyayemogo asinkhronnogo dvigatelya v nestatsionarnykh rezhimakh. Elektromashinostroyeniye i elektrooborudovaniye, 75, 46–51.

Petrushin, V. S., Yakimets, A. M. (2008). Osobennosti teplovykh raschetov neustanovivshikhsya rezhimov raboty reguliruyemykh asinkhronnykh dvigateley. Elektromashinostroyeniye i elektrooborudovaniye, 71, 47–51.

Shirokov, O. G., Zaliznyy D. I. (2008). Teplovyye skhemy zameshcheniya elektroenergeticheskikh ustroystv. Naukoyemkiye tekhnologii, 2, 63–67.

Anuchin, A. S., Fedorova K. G. (2014). Dvukhmassovaya teplovaya model' asinkhronnogo dvigatelya. Elektrotekhnika, 2, 21–25.

Malafeyev, S. I., Zakharov, A. V., Kudryashov, S. V. (2009). Modelirovaniye teplovykh perekhodnykh protsessov v ventil'no-induktornom dvigatele. Elektrichestvo, 3, 54–57.

Rotating electrical machines – Part 1: Rating and performance. (2004). IEC Revision of Publication 60034, 1, 137.

Staton, D., Cavagnino A. (2008). Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models. IEEE Transactions on Industrial Electronics, 55(10), 3509–3516.

Mahdavi, S., and all (2013). Thermal Modeling as a Tool to Determine the Overload Capability of Electrical Machines. International Conference on Electrical Machines and Systems. Busan. Korea, 454–458.

Andriyenko, P. D., Kotsur, I. M., Yarymbash, D. S. (2008). Primeneniye metodov mate-maticheskogo modelirovaniya dlya opredeleniya parametrov induktora. Vestnik SevNTU. Sevastopol', 88, 117 – 120.

Andriyenko, P. D., Yarymbash, D. S. (2008). Modelirovaniye elektromagnitnykh i teplovykh protsessov pri induktsionnom nagreve mundshtuka pressa. Razrabotka rudnykh mestorozhdeniy. Krivoy Rog, 92, 163–167.

Andriyenko, P. D., Yarymbash, D. S. (2006). Osobennosti modelirovaniya temperaturnogo sostoyaniya tekhnologicheskoy sistemy kak ob"yekta upravleniya. Yelektromashinobuduvannya ta yelektroobladnannya. Odessa, 66, 291–293.

Kilimnik, I. M., Yarymbash, D. S. (2007). Osobennosti modelirovaniya elektromagnitnykh protsessov v induktore kalibra mundshtuka pressa. Visnyk Kremenchuts'kogo derzhavnogo polstekhnschnogo unsversytetu. Kremenchuk: KDPU, 4(45), 53–55.

Yarymbash, D. S., Tyutyunnik, A. V., Zagrunnyy, O. L. (2006). Povysheniye effektivnosti upravleniya rezhimami elektricheskogo obogreva pri pressovanii zagotovok podovykh blokov. Elektrotehnika i elektroenergetika. Zaporozh'ye: ZNTU, 2, 56–60.

Belyayev, N. M., Ryadno, A. A. (1982) Metody teorii teploprovodnosti. M.: Vyssh. shkola, 302.

Yarymbash, D.S. (2015) The research of electromagnetic and thermoelectric processes in the AC and DC graphitization furnaces. Scientific Bulletin of National Mining University, 3, 95–102.

Yarymbash, D.S., Oleinikov, A.M. (2015). On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads. Russian Electrical Engineering, 86(2), 86–92. DOI: http://dx.doi.org/10.3103/S1068371215020121.

Yarymbash, D. S., Kotsur, M. I., Yarymbash, S. T., Kotsur, I. M. (2016). Features of three-dimensional simulation of the electromagnetic fields of the asynchronous motors. Electrical Engineering And Power Engineering, 2, 43–50. doi: http://dx.doi.org/10.15588/1607-6761-2016-2-5.

Mademlis, C., Margaris, N., and Xypteras J. (2000). Magnetic and Thermal Performance of a Synchronous Motor under Loss Minimization Control. IEEE Trans. on Energy Conversion, 15(2), 135–142. DOI: 10.1109/60.866990

Mellor, P.Y., Roberts, D., Turner, D.R. (1991). Lumped parameter thermal model for electrical machines of TEFC design. IEEE Proceedings B (Electric Power Applications), 138(5). 205–218. DOI: http://dx.doi.org/10.1049/ip-b.1991.0025.

Shuyskiy, V.P. (1968). Raschet elektricheskikh mashin. L.: Energiya, 732.

Lykov, A.V. (1967). Teoriya teploprovodnosti: uchebnoye posobiye. M.: Vysshaya shkola, 600.

Yarymbash, D. S., Tyutyunnik, A. V., Zagrunnyy, O. L. (2006). Modelirovaniye temperaturnykh rezhimov elektrotekhnologicheskoy sistemy «induktory–mundshtuk» na podgotovitel'nom etape tura pressovaniya. Elektrotehnika i elektroenergetika. Zaporozh'ye: ZNTU, 1, 56 – 60.

Published

2017-07-14

How to Cite

Litvinov, D. O., Shlyanin, O. O., Bondarchuk Т. V., Stremydlovska, O. V., & Matar, R. (2017). SCHEME-FIELD MODELING OF THERMAL PROCESSES IN INDUCTION MOTORS. Electrical Engineering and Power Engineering, (1), 71–78. https://doi.org/10.15588/1607-6761-2017-1-9