SCHEME-FIELD MODELING OF THERMAL PROCESSES IN INDUCTION MOTORS
DOI:
https://doi.org/10.15588/1607-6761-2017-1-9Keywords:
asynchronous motor, thermal replacement circuit, thermal conductivity, thermal resistance, integral method, finite element methodAbstract
Purpose. Development of a new approach for increasing thermal calculations accuracy by thermal field and scheme combinating simulation in determining the effective heat conductivities in details and nodes of induction motor.Research methods: the heat conductivity theory, heat transfer, thermal equivalent circuit, thermal potentials, thermal field simulation, finite elements methods.
The obtained results. The integrated method for conversion data of field modeling into thermal circuit model parameters is researched, which significantly reduces influence of nodes quantity of the thermal circuit on the accuracy of parameters determination by matrix invariancy of geometrical conductivities to temperature changes of heat conductivity values of induction motors constructional and active materials. By means of this method, for discretization induction motor spatial model on separate components, it is possible in advance to determine the components of matrix conductivities and to prevent the degeneration of this matrix in the scheme model.
Scientific novelty. A new method of scheme model conversion with the use of an integral thermal potential is researched, which allows to pass from heat resistances, as a parameters of thermal equivalent circuit, to geometric conductivities of this scheme. It has been proved that by processing the data arrays of field modeling for determination geometric conductivities of thermal equivalent circuit, it is possible to prevent degeneration of matrix conductivities for the stationary thermal mode of induction motor in short-circuit mode, having provided reduction of nodes quantity and increase in computing efficiency and accuracy.
Practical significance. The integrated method for converting data of induction motor field modeling into thermal model parameters allows at increase in the number of nodes in thermal scheme from one to ten to reduce the average value of a relative error from 9,2% to 2,42%, what completely meets requirements at designing of induction motors, and also for imitating modeling of thermal processes dynamics at the variable operating conditions.
References
Petrenko, A. N., Tanyanskiy, V. Ye., Petrenko, N.YA. (2012). Issledovaniye temperaturnogo polya i teplovykh potokov chastotno-upravlyayemogo asinkhronnogo dvigatelya. Visnik NTU "KHPI", 49(955), 61–65.
Kotsur, M. I. (2014) Osobennosti udarnogo teplovogo vozdeystviya na asinkhronnyy dvigatel' s modifitsirovannoy sistemoy impul'snogo regulirovaniya v usloviyakh chastykh puskov. Elektrotehnika i elektroenergetika., 1, 32–36. doi: http://dx.doi.org/10.15588/1607-6761-2014-1-5.
Filippov, I. F. (1986). Teploobmen v elektricheskikh mashinakh. L.: Energoatomizdat, 256.
Sipaylov, G. A., Sannikov, D. I., Zhadan, V. A. (1989). Teplovyye, gidravlicheskiye i aerodinamichesiye raschety v elektricheskikh mashinakh. M.: Vyssh. shk., 239.
Zaliznyy, D. I., Shirokov, O. G., Popichev, V. V. (2015). Adaptivnaya matematicheskaya model' teplovykh protsessov asinkhronnogo dvigatelya s korotkozamknutym rotorom. Vestnik GGTU im. P. O. Sukhogo, 1, 30–43.
Wallmark, O. (2012) Analysis of Electrical Machines. Royal Institute of Technology Stockholm. Sweden.
Ostashevskiy, N. A., Shayda, V. P. (2010). Matematicheskaya model' teplovogo sostoyaniya chastotno-upravlyayemogo asinkhronnogo dvigatelya v nestatsionarnykh rezhimakh. Elektromashinostroyeniye i elektrooborudovaniye, 75, 46–51.
Petrushin, V. S., Yakimets, A. M. (2008). Osobennosti teplovykh raschetov neustanovivshikhsya rezhimov raboty reguliruyemykh asinkhronnykh dvigateley. Elektromashinostroyeniye i elektrooborudovaniye, 71, 47–51.
Shirokov, O. G., Zaliznyy D. I. (2008). Teplovyye skhemy zameshcheniya elektroenergeticheskikh ustroystv. Naukoyemkiye tekhnologii, 2, 63–67.
Anuchin, A. S., Fedorova K. G. (2014). Dvukhmassovaya teplovaya model' asinkhronnogo dvigatelya. Elektrotekhnika, 2, 21–25.
Malafeyev, S. I., Zakharov, A. V., Kudryashov, S. V. (2009). Modelirovaniye teplovykh perekhodnykh protsessov v ventil'no-induktornom dvigatele. Elektrichestvo, 3, 54–57.
Rotating electrical machines – Part 1: Rating and performance. (2004). IEC Revision of Publication 60034, 1, 137.
Staton, D., Cavagnino A. (2008). Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models. IEEE Transactions on Industrial Electronics, 55(10), 3509–3516.
Mahdavi, S., and all (2013). Thermal Modeling as a Tool to Determine the Overload Capability of Electrical Machines. International Conference on Electrical Machines and Systems. Busan. Korea, 454–458.
Andriyenko, P. D., Kotsur, I. M., Yarymbash, D. S. (2008). Primeneniye metodov mate-maticheskogo modelirovaniya dlya opredeleniya parametrov induktora. Vestnik SevNTU. Sevastopol', 88, 117 – 120.
Andriyenko, P. D., Yarymbash, D. S. (2008). Modelirovaniye elektromagnitnykh i teplovykh protsessov pri induktsionnom nagreve mundshtuka pressa. Razrabotka rudnykh mestorozhdeniy. Krivoy Rog, 92, 163–167.
Andriyenko, P. D., Yarymbash, D. S. (2006). Osobennosti modelirovaniya temperaturnogo sostoyaniya tekhnologicheskoy sistemy kak ob"yekta upravleniya. Yelektromashinobuduvannya ta yelektroobladnannya. Odessa, 66, 291–293.
Kilimnik, I. M., Yarymbash, D. S. (2007). Osobennosti modelirovaniya elektromagnitnykh protsessov v induktore kalibra mundshtuka pressa. Visnyk Kremenchuts'kogo derzhavnogo polstekhnschnogo unsversytetu. Kremenchuk: KDPU, 4(45), 53–55.
Yarymbash, D. S., Tyutyunnik, A. V., Zagrunnyy, O. L. (2006). Povysheniye effektivnosti upravleniya rezhimami elektricheskogo obogreva pri pressovanii zagotovok podovykh blokov. Elektrotehnika i elektroenergetika. Zaporozh'ye: ZNTU, 2, 56–60.
Belyayev, N. M., Ryadno, A. A. (1982) Metody teorii teploprovodnosti. M.: Vyssh. shkola, 302.
Yarymbash, D.S. (2015) The research of electromagnetic and thermoelectric processes in the AC and DC graphitization furnaces. Scientific Bulletin of National Mining University, 3, 95–102.
Yarymbash, D.S., Oleinikov, A.M. (2015). On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads. Russian Electrical Engineering, 86(2), 86–92. DOI: http://dx.doi.org/10.3103/S1068371215020121.
Yarymbash, D. S., Kotsur, M. I., Yarymbash, S. T., Kotsur, I. M. (2016). Features of three-dimensional simulation of the electromagnetic fields of the asynchronous motors. Electrical Engineering And Power Engineering, 2, 43–50. doi: http://dx.doi.org/10.15588/1607-6761-2016-2-5.
Mademlis, C., Margaris, N., and Xypteras J. (2000). Magnetic and Thermal Performance of a Synchronous Motor under Loss Minimization Control. IEEE Trans. on Energy Conversion, 15(2), 135–142. DOI: 10.1109/60.866990
Mellor, P.Y., Roberts, D., Turner, D.R. (1991). Lumped parameter thermal model for electrical machines of TEFC design. IEEE Proceedings B (Electric Power Applications), 138(5). 205–218. DOI: http://dx.doi.org/10.1049/ip-b.1991.0025.
Shuyskiy, V.P. (1968). Raschet elektricheskikh mashin. L.: Energiya, 732.
Lykov, A.V. (1967). Teoriya teploprovodnosti: uchebnoye posobiye. M.: Vysshaya shkola, 600.
Yarymbash, D. S., Tyutyunnik, A. V., Zagrunnyy, O. L. (2006). Modelirovaniye temperaturnykh rezhimov elektrotekhnologicheskoy sistemy «induktory–mundshtuk» na podgotovitel'nom etape tura pressovaniya. Elektrotehnika i elektroenergetika. Zaporozh'ye: ZNTU, 1, 56 – 60.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 D. O. Litvinov, O. O. Shlyanin, Т. V. Bondarchuk, O. V. Stremydlovska, Riham Matar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.