DOI: https://doi.org/10.15588/1607-6761-2017-1-4

FEATURES OF PARAMETER DETERMINATION OF THE INDUCTION MOTOR SUBSTITUTION CIRCUIT FOR SHORT-CIRCUIT MODE

D. S. Yarymbash, M. I. Kotsur, S. T. Yarymbash, I. M. Kotsur

Abstract


Purpose. Development of a new method for determining the parameters of an induction motor, based on a three-dimensional transient mathematical model of the electrical and magnetic fields, that provides high accuracy and reliability of results and considering the design features of induction motors, nonlinearity of the electrophysical and magnetic properties of active and structural materials.

Methods. Numerical simulation of the conjugate spatial transient electrical and magnetic fields of the induction motor in the short-circuit mode, with help methods of the theory of electromagnetic fields, finite element, theory of electrical machines and electrical circuits.

 

Results. Theoretical researches and simulation results, which based on numerical realization of the finite element method of three-dimensional transient mathematical model of the electrical and magnetic fields in induction motor which displayed the features of the processes of AC energy conversion in the experimental short-circuit mode are obtained.

The magnetic field energy is localized mainly in the area of the cores and slots of the stator and rotor of the low-power induction motors by researches was determined. In the zone of the frontal parts of the stator windings, up to 15% of the magnetic field energy of the induction motor is evolved. In the central area of the active part of the induction motor, a length up to 60% of the total length of the stator and rotor core, the magnetic field has plane-parallel form, but is transformed into zones of coil ends of the stator windings and near its end of the core. The influence of the characteristic features of the magnetic field distribution, its energy on the substitution circuit parameters of the low power induction motor and its operating modes are defined. The ratios between the resistances inductive coil ends zone of the stator windings and slots zone stator and rotor windings for an induction motor in short-circuit mode were respectively 14.7% and 85.3%.

Originality. The regularities of the spatial distribution of induction and the energy of the magnetic field in the experimental short-circuit mode are defined. When the localization of the magnetic field energy in the frontal parts zone of the stator windings and in the cores and slots regions of the stator and rotor of low-power induction motors, the quantitative relations between the inductive resistances are determined.

Practical value. Through the implementation of the dynamic spatial model of electromagnetic fields by the finite element method and numerical simulation data of the short-circuit dynamic mode of the induction motor, the parameters taking into account the structural features of the stator and rotor, and the nonlinear properties of active materials in the multicomponent modeling domain of its substitution circuit are determined. It is proved, that the new approach to the determination of the substitution circuit parameters of induction motors based on simulation data field provides a significant increase in accuracy compared to conventional iterative-empirical methods.


Keywords


three-dimensional modeling; induction motor; short-circuit mode; electromagnetic field; finite element method; the approximating function; the magnetic field energy

References


Kopulov, I. P. (2001). Matematicheskoe modelirovanie electricheskih mashin [Mathematical modeling of electrical machines], M. Vysshaya shkola, 327.

Кopulov I. P., Klokov V. К., Morozkin V. P. (2005). Proektirovanie elektricheskih mashin [Design of electrical machines]. M. Vysshaya shkola, 767.

Kotsur, M. (2013). The thermal state of the ad motor at the reduce rotor speed. Eastern-European Journal Of Enterprise Technologies, 2(8(62)), 8-10. doi:http://dx.doi.org/10.15587/1729-4061.2013.12421

Kotsur, M. (2014). Features of the of thermal effect impact on the asynchronous motor with the modified pulse control system in conditions of frequent starts. Electrical Engineering And Power Engineering, 1, 32-36. doi:http://dx.doi.org/10.15588/1607-6761-2014-1-5

Kotsur, M. (2015). Increase effectiveness of reversible braking mode realization of the wound-rotor induction motor. Eastern-European Journal Of Enterprise Technologies, 1(8(73)), 27-30. doi:http://dx.doi.org/10.15587/1729-4061.2015.36670

Kotsur, M. (2016). Synchronization methods of the induction motors rotation in energy-efficient electric drive system. Fundamental and Applied Studies in the Modern World: papers and commentaries. The University of Oxford. Oxford, XV, 384-389.

Moshhinskij Ju. A, Bespalov, V.Ja., Kirjakin, A. A. (1998). Opredelenie parametrov shemy zameshhenija asinhronnoj mashiny po katalozhnym dannym. Еlektrichestvo, 4(98), 38-42.

Makeev, M. S., Kuvshinov, A.A.(2013). Algoritm rascheta parametrov shemy zameshhenija asinhronnogo dvigatelja po katalozhnym dannym. Vektor nauki TGU, 1(23), 108-112.

Yarymbash D.S., Oleinikov A.M. (2015). On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads. Russian Electrical Engineering, 2(86), 86 – 92. DOI: http://dx.doi.org/10.3103/S1068371215020121.

Yarymbash, D., Yarymbash, S., Divchuk, T., & Kylymnik, I. (2016). Determination features of the power transformer short circuit parameters through field modeling. Electrical Engineering And Power Engineering, 1, 12-17. doi:http://dx.doi.org/10.15588/1607-6761-2016-1-2

Yarymbash, D.S. (2015). Issledovanie elektromagnitnyh i termojelektricheskih processov v pechah grafitacii peremennogo i postojannogo toka. Naukovij vіsnik NGU, 3, 95–102.

Yarymbash, D., Kotsur, M., Yarymbash, S., & Kotsur, I. (2016). Features of three-dimensional simulation of the electromagnetic fields of the asynchronous motors. Electrical Engineering And Power Engineering, 2, 43-50. doi:http://dx.doi.org/10.15588/1607-6761-2016-2-5

Persova, М.G., Soloveychik, Yu.G., Temlyakova, Z.S. (2007). O novom podhode k proektirovaniyu elektricheskih mashin na osnove chislennogo modelirovaniya [A new approach to the design of electrical machines based on numerical simulation]. Elektrotehnika, 9, 15 – 21.

Vaskovskiy, Yu.V., Geraskin, A.A. (2012). Matematicheskoe modelirovanie elektromagnitnyih poley v korotkozamknutom asinhronnom dvigatele s povrezhdennoy obmotkoy rotora [Mathematical modeling of electromagnetic fields in the squirrel cage induction motor with damaged rotor winding]. Tehnicheskaya elektrodinamika, 2, 56 – 61.

Zamchalkin, A.S., Tyukov, V.A. (2012). Chislennoe modelirovanie protsessa puska asinhronnogo dvigatelya [Numerical simulation of the process of starting an induction motor]. Dokladyi TUSURa, 1(25), 171 – 177.

Milykh, V., & Polyakova, N. (2013). Analysis of harmonic composition of the alternating magnetic field associated with the rotating rotor of turbogenerator in the no-load and short-circuits modes. Electrical Engineering And Power Engineering, 2, 5-13. doi:http://dx.doi.org/10.15588/1607-6761-2013-2-1

Plyugin, V. E. (2013). Chislennoe modelirovanie elektromagnitnogo polya asinhronnogo dvigatelya s vneshnim massivnyim rotorom [Numerical simulation of the electromagnetic field of the induction motor with the external massive rotor]. Vestnik NTU "HPI", 51(1024), 66 – 75.

Mogilnikov B. C., Oleynikov A. M., Strelnikov A. N. (1983). Asinhronnyie dvigateli s dvuhsloynyim rotorom i ih primenenie[Induction motors with two-layer rotor and their application]. M., Energoatomizdat, 120.


GOST Style Citations


1. Копылов, И. П. Математическое моделирование электрических машин [Текст]/ И. П. Копылов. – М.: Высшая школа, 2001. – 327 с.

2. Проектирование электрических машин [Текст] / И.П. Копылов, Б.К. Клоков, В.П. Морозкин и др. – М.: Высшая школа, 2005. – 767 с.

3. Коцур М.И. Тепловое состояние асинхронного двигателя при пониженных скоростях вращения [Текст] / М.И. Коцур, // Восточно-Европейский журнал передовых технологий –2013. – №2/8(62). – С. 8-10.

4. Коцур М. И. Особенности ударного теплового воздействия на асинхронный двигатель с модифицированной системой импульсного регулирования в условиях частых пусков [Текст] / М. И. Коцур // Електротехніка та електроенергетика. – 2014 – №1 – С. 32 – 36. DOI:http://dx.doi.org/10.15588/1607-6761-2014-1-5.

5. Коцур М. И. Повышение эффективности режима торможения противовключением асинхронного двигателя c фазным ротором [Текст] / М. И. Коцур, И. М. Коцур, А. В. Близняков // Восточно-Европейский журнал передовых технологий. –2015. – №1/8(73). – С.27-30. DOI: http://dx.doi.org/10.15587/1729-4061.2015.36670

6. Kotsur, M. Synchronization methods of the induction motors rotation in energy-efficient electric drive system [Text] / M. Kotsur // Fundamental and Applied Studies in the Modern World: papers and commentaries/ The University of Oxford. – Oxford, 2016. – Volume XV. –P. 384-389.

7. Мощинский Ю. А. Определение параметров схемы замещения асинхронной машины по каталожным данным [Текст] / Ю.А. Мощинский, В.Я. Беспалов, А. А. Кирякин // Электричество - 1998. - №4/98. - С. 38-42

8. Макеев М. С. Алгоритм расчета параметров схемы замещения асинхронного двигателя по каталожным данным [Текст] / М.С. Макеев, А.А. Кувшинов // Вектор науки ТГУ. – 2013. – № 1 (23). – С. 108-112.

9. Yarymbash D.S., Oleinikov A.M. On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads. Russian Electrical Engineering, 2015, Volume 86, Issue 2, pp. 86 – 92. DOI:http://dx.doi.org/10.3103/S1068371215020121.

10. Яримбаш Д.С. Особливості визначення параметрів короткого замикання силових трансформаторів засобами польового моделювання [Текст] / Д.С. Яримбаш, С.Т. Яримбаш, Т. Є. Дівчук, І.М. Килимник // Електротехнікатаелектроенергетика – 2016. - №1 – С. 12 – 17. DOI:http://dx.doi.org/10.15588/1607-6761-2016-1-2.

11. Ярымбаш Д.С. Исследование электромагнитных и термоэлектрических процессов в печах графитации переменного и постоянного тока / Д.С. Ярымбаш, // Науковий вісник НГУ – 2015. – №3. – С.95–102.

12. Д. С. Яримбаш Особенности трехмерного моделирования электромагнитных полей асинхронного двигателя [Текст] / Д. С. Яримбаш, М. И. Коцур, С. Т. Яримбаш, И. М. Коцур// Електротехніка та електроенергетика – 2016. – №2 – С. 43 – 50. DOI: http://dx.doi.org/10.15588/1607-6761-2016-2-5.

13. Персова, М. Г. О новом подходе к проектированию электрических машин на основе численного моделирования [Текст] / М.Г. Персова, Ю.Г. Соловейчик, З.С. Темлякова и др. // Электротехника. – 2007. - № 9. – С. 15 -21.

14. Васьковский, Ю. В. Математическое моделирование электромагнитных полей в короткозамкнутом асинхронном двигателе с поврежденной обмоткой ротора [Текст] / Ю. В. Васьковский, А. А. Гераскин // Техническая электродинамика. – 2010 – № 2. – С. 56 – 61.

15. Замчалкин, А.С. Численное моделирование процесса пуска асинхронного двигателя [Текст] / А.С. Замчалкин, В. А. Тюков // Доклады ТУСУРа. – 2012. – № 1 (25). – С. 171 – 177.

16. Милых, В. И. Анализ гармонического состава переменного магнитного поля, связанного с вращающимся ротором турбогенератора, в режиме холостого хода и короткого замыкания [Текст] / В. И. Милых, Н. В. Полякова // Электротехника и электроэнергетика. – 2013. – №2. – С. 5 – 12.

17. Плюгин, В. Е. Численное моделирование электромагнитного поля асинхронного двигателя с внешним массивным ротором [Текст] / В.Е. Плюгин // Вестник НТУ «ХПИ». – 2013. – № 51 (1024) – С. 66 – 75.

18. Могильников B.C. Асинхронные двигатели с двухслойным ротором и их применение [Текст] / B.C. Могильников, A.M. Олейников, А. Н. Стрельников. – М.: Энергоатомиздат, 1983. – 120 с.



Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2017 D. S. Yarymbash, M. I. Kotsur, S. T. Yarymbash, I. M. Kotsur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Address of the journal editorial office:

Editorial office of the the science journal "Electrical Engineering and Power Engineering" ("Electrotechnics and Electroenergetics")

Zaporozhye National Technical University, 

 Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 

Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

E-mail: rvv@zntu.edu.ua


Reference to the journal is obligatory in the cases of complete or partial use of its materials.