transformers, heat-and-mass transfer, CFD-simulation


The purpose of the study is to ensure designing of full-function and stable CFD-simulation procedure for integrated thermal models of the transformers and the reactors, as well as to receive the approval of method of quality and abilities using the calculation examples of full-scale models of the equipment, along with autonomous models of coil-type windings having various design versions of heat-transfer intensification.

Research Methods. Computational Fluid Dynamics (CFD) method of mathematical simulation of nonlinear processes as concerns hydrodynamics and heat transfer in the transformer equipment using finite-element analysis is employed.

The results obtained. The paper presents the main elements of technique for creation of mathematical models; it also contains the examples of CFD-calculations as referred to axisymmetrical integrated models of furnace transformer and gapped-core shunt reactor, as well as the models of windings having design approaches of heat exchange intensification owing to «labyrinth» (partitions) and «alternation» (of number and locations) of axial cooling ducts.

Scientific novelty. Scientific value of applied methodological approach lies in the fact that the developed models are the integrated ones, i.e., they consider geometry, loss, thermal parameters not only of the windings, but also of the main structural elements and cooling system. This ensures the quality and the accuracy of simulation of heat-and-mass transfer processes in complex structure of oil ducts and coils in the windings, enables to avoid erroneous «zigzag» oil flow movement through the groups of coil regular structures (without labyrinth and «alternation» of number and locations of axial ducts under conditions of transformer oil natural cooling as was deduced in the certain studies.

Practical significance. Integrated models ensure calculation of oil temperature distribution within active part, including winding fields, oil temperature field between the tank and the windings, temperatures at oil outlet from the tank (top) and oil inlet into the tank (bottom). Calculations allow estimation of mean temperature distribution over the crosssection of winding coils, mean winding temperatures by means of averaging of the temperatures within the coils, detection of location and maximum temperature on the surface of conductors relevant to the most heated coil. The latter is treated as winding hot spot temperature (HST) and used to evaluate the aging of the contacting insulation. Determination of winding hot spot locations and temperatures (HST) is used as support data for installation areas of fiber optic probes for measurement during type testing, as well as in operational monitoring systems of the equipment. The results presented above are practically applied for industrial designing and testing of transformers and reactors.

Author Biographies

V. F. Ivankov, PJSC «ZTR»

Chief of bureau of PJSC «ZTR»

A. V. Basova, PJSC «ZTR»

Leading engineer-designer of PJSC «ZTR»


Biki M.A. Proektirovanie silovykh transformatorov. Raschety osnovnykh parametrov. Moscow, Znak, 2013, 612 p.

Shvidler A. B., Mikhailovskii Yu. A., Cherednichenko H. B., Klimenko L. A. Teplootdacha vnutrennikh katushechnykh obmotok transformatorov, Elektrotekhnika. 1980, No 7. pp. 19–21.

Voevodin I. D., Mikhailovskii Yu. A., Chernohotskii V. M., Shvidler A. B. Metody rascheta prevyshenii temperatury obmotok silovykh transformatorov, Transformatory, Perenapriazh. i koordinatsiia izoliatsii, Per. dokl. mezhdunar. konf. po bolsh. elektr. sistemam SIHRE–84, Moscow, Enerhoatomizdat, 1986, S. 190–198.

Shvidler A. B., Mikhailovskii Yu. A., Cherednichenko H. B. Intensifikatsiia teploobmena v katushechnykh obmotkakh transformatorov, Elektrotekhnika, 1987, No 5, pp. 8–10.

Sisunenko O. I., Hitin Yu. S., Mikhailovskii Yu. A., Shvidler A. B., Serebritskaia E. A. RD16 303-86. Rukovodiashchii dokument. Transformatory silovye maslianye. Teplovoi raschet obmotok s razlichnymi sposobami intensifikatsii teploobmena, Vveden s 01.01.87. Zaporozhe, VIT, 42 s.

Іvankov V. F., Shafir Yu. N. Rozrakhunkova pidsistema avtomatizovanoho proektuvannia transformatoriv i reaktoriv. Pratsi Іn-tu elektrodinamiki NAN Ukraini. Zbirnik naukovikh prats, Kiev, Іn-t elektrodinamiki NAN Ukraini, 2008, No 18, S. 123–131.

Oliver A. J. Estimation of transformer winding temperatures and coolant flows using a general network method. IEE Proc., Vol. 127, No. 6, November 1980, P. 395–405.

Del Vecchio R. M., Poulin B., Feghali P. T. Transformer design principles: with application to core-form transformers, Gordon and Breach Science Publishers, 2001, 599 p.

Codd J. Assessment of a Hydraulic Network Model for Zig-zag Cooled Power Transformer Windings / Joris Codd Wim Van der Veken, Martine Baelman, Preprint submitted to Applied Thermal Engineering January 21, 2015. – Access mode :

Pat. US 6,609,079 B1, G01K 17/00, 702/13. Method and arrangement for ascertaining state variables, Seitlinger W. ; Assignee: VA TECH Elin Transformatoren GmbH, No US006609079B1; filed 06.05.1999 ; pub. 25.11.1999, № WO99/60682. Access mode : https://

Mufuta J.-M., Bulck E. Modelling of the mixed convection in the winding of a disc-type power transformer, Applied Thermal Engineering 20 (2000), P. 417–437. Access mode :

Kucheriavaia I. N. Chislennoe issledovanie vliianiia razlichnykh faktorov protsessa teploobmena na effektivnost okhlazhdeniia transformatornovypriamitelnykh modulei. Tekhn. Elektrodinamika, 2000, No 3, pp. 56–61.

Kozlov V. V. Pidvishchennia efektivnosti primusovoho okholodzhennia visokovoltnikh maslianikh transformatoriv: avtoref. dis. na zdobuttia nauk. stupenia kand. tekhn. nauk: spets. 05.09.01 «Elektrichni mashini i aparati», Nats. tekhn. un-t «Khark. politekhn. in-t», Kharkiv, 2004, 19 s.

Rassalskii O. M. Analiz i rozrakhunok teplovikh rezhimiv silovoho elektroustatkuvannia, Zaporizkii natsionalnii tekhnichnii un-t, Zaporizhzhia, 2005, 146 s.

Tanguy A, Patelli J. P., Taisne J. P. Thermal performance of power transformers: thermal calculation tools focused on new operating requirements, CIGRE, Paris Session, 2004, Report A2–105

Krukovskii P. H., Yatsevskii V. A., Kontorovich L. N., Ivankov V. F., Yurchenko D. D. Metodicheskie podkhody k CFD–modelirovaniiu teplovykh rezhimov silovykh maslianykh transformatorov. Promyshlennaia teplotekhnika, 2008, Vol. 30, No 6, S. 57–66.

Krukovskii P. H., Yatsevskii V. A., Kontorovich L. N., Ivankov V. F., Yurchenko D. D. CFD–modelirovanie teploobmena v katushechnykh obmotkakh transformatorov pri este-stvennoi konvektsii okhlazhdaiushcheho masla. Promyshlennaia teplotekhnika, 2009, Vol. 31, No 4, pp. 17–26.

Krukovskii P. H., Yatsevskii V. A., Kontorovich L. N., Ivankov V. F., Khutornyi V. M. CFD–analiz teplovoho sostoianiia obmotok maslianykh transformatorov pri kriticheskikh razmerakh horizontalnykh okhlazhdaiushchikh kanalov. Promyshlennaia teplotekhnika, 2009, Vol. 31, No 6, pp. 35 – 45.

Yatsevskii V. A., Krukovskii P. H. Osobennosti hidrodinamiki i teploobmena pri techenii masla vo vzaimosviazannykh kanalakh katushechnykh obmotok silovykh transformatorov. Promyshlennaia teplotekhnika, 2011, No 2, pp. 24–34.

Yatsevsky V. A. Hydrodynamics and heat transfer in cooling channels of oil-filled power transformers with multicoil windings. Applied Thermal Engineering, 2014, pp. 347–353.

Ivankov V. F., Basova A. V., Shulga N. V. Verification methods for electrothermal calculations of electric reactors without steel. Elektrotekhnika ta elektroenerhetika, 2015, No 5, pp. 26–34.

JiaoY. CFD Study On The Thermal Performance of Transformer Disc Windings Without Oil Guides / Yuhe Jiao // M. SС Thesis. EGI 2012: 089MSC EKV915. Stockholm.

Wittmaack R. Thermal Design of Power Transformers via CFD, Journal of Energy and Power Engineering, 2015, No 9, pp. 102–107.

Transformer Thermal Modeling. Working Group A2.38, CIGRE. June 2016, ISBN: 978-2-85873-362-0, 188 p.

Kish L. Nahrev i okhlazhdenie transformatorov. Moscow, Enerhiia, 1980, 208 s.

Basova A. V., Ivankov V. F. Inzhenernyi raschet kombinirovannoi maslianoi sistemy okhlazhdeniia transformatorov. Prom. teplotekhnika, 2013, Vol. 35, No 4, pp. 9–17.

Ivankov V. F., Basova A. V., Shulha N. V. Elektroteplovye raschetnye modeli elementov konstruktsii transformatornoho oborudovaniia. Elektrotekhnika ta elektroenerhetika, 2014, No № 2, pp. 41–53.

Mikheev M. A., Mikheeva I. M.Osnovy teploperedachi. Moscow, Enerhiia, 1977, 344 s.

Yurchenko D. Modelirovanie teploobmena v kanalakh s intensifikatorami. ANSYS Advantage, 2009, No 10, pp. 32–34.

IEC 60076-7. Power transformers Part 7: Loading guide for oil–immersed transformers, 2005, 114 p.

How to Cite

Ivankov, V. F., & Basova, A. V. (2016). CALCULATION OF CFD-THERMAL MODELS OF OIL-COOLED TRANSFORMER EQUIPMENT. Electrical Engineering and Power Engineering, (2), 19–32.