УДК 62-83:621.874

И. А. Орловский, Ю. С. Бут

Уточненные математическая и имитационная модели электропривода перемещения мостового крана

Разработаны математическая и имитационная модели движения в горизонтальной плоскости четырехдвигательного электропривода перемещения мостового крана, которые учитывают: упругости приводных валов, главной и концевых балок, углы установочного перекоса колес, взаимодействие четырех цилиндрических двухребордных колес с рельсами. Выполнены исследования движения данного крана с помощью разработанной имитационной модели.

В настоящее время с ростом возможностей вычислительной техники исследование и первоначальную отладку новых систем управления целесообразно выполнять на имитационной математической модели, описывающей с достаточной точностью реальный объект. Это позволяет снизить себестоимость исследований, сократить время разработки системы управления, оценить работу объекта при различных параметрах и режимах работы, с различными вариантами систем управления. Такая модель, разработанная применительно к электроприводам мостового крана, не только позволяет выявлять основные факторы, определяющие движения мостового крана, но и дает возможность оценить порядок системы дифференциальных уравнений, линейность или нелинейность ее отдельных частей, что необходимо для исследования возможности последующей идентификации параметров математической модели в реальном времени. Наличие математической модели, описывающей работу крана, позволяет найти с помощью обучающих алгоритмов (например, генетических алгоритмов [1]) оптимальные (по различным критериям) настройки системы управления.

Большинство существующих кранов на рельсовом ходу (мостового типа, башенные и портальные) имеют механизмы передвижения с раздельным приводом. В этих механизмах на каждой стороне крана устанавливаются самостоятельные приводы с одним или двумя приводными колесами, получающими движение от индивидуальных двигателей. В механизмах передвижения применяют, как правило, двухребордные ходовые колеса с цилиндрической дорожкой катания. Общий вид мостового крана представлен на рис. 1 [2].

Рис. 1. Расположение составных частей и сборочных единиц на мостовом двухбалочном опорном кране: 1 – кабина машиниста (крановщика); 2 – крановые рельсы; 3 – ходовые колеса; 4 – концевая балка; 5 – гибкий кабель для токоподвода к тележке крана; 6 – вспомогательный механизм подъема груза; 7 – главный механизм подъема груза; 8 – крановая тележка; 9 – проволока для подвески гибкого кабеля; 10 – площадка для обслуживания троллеев; 11 – главная балка; 12 – механизм передвижения тележки; 13 – механизм передвижения моста

Металлоконструкция мостовых кранов на рельсовом ходу соединена с ходовыми колесами, которые через приводные валы и редукторы приводятся во вращения электродвигателями, показанными в кинематической схеме на рис. 2 [2]. Для компенсации отклонений пролетов рельсового пути и крана от своих номинальных значений ширина дорожки катания двухребордного колеса делается больше ширины головки рельса (обычно на 30 мм) [3]. Это предопределяет некоторый зазор между ребордами колес и рельсом.

При движении крана возникают колебания его отдельных частей, вызванные упругостью соединений, возникновением изменяющихся возмущающих сил (сил перекоса и поперечных реакций рельсового пути), что подтверждается результатами, полученными в [4]. Основными факторами, способствующими возникновению сил перекоса и поперечных реакций рельсового пути, являются: установочный перекос ходовых колес в горизонтальной плоскости; смещение грузовой тележки от середины пролета; перекос ходовых колес вследствие упругой деформации моста; различие характеристик приводных двигателей для кранов с раздельным приводом и разница в диаметрах приводных колес кранов [3].

Снизить влияние нежелательных факторов можно, применив многодвигательный взаимосвязанный привод перемещения мостового крана, перед которым ставятся задачи: повышения скорости перемещения, плавности разгона и торможения, снижения износа реборд колес и рельсов, минимизация потребляемой энергии. Для обеспечения заданных требований необходима разработка и создание новых систем управления, обеспечивающих взаимосвязанное управление индивидуальными асинхронными приводами колес, обеспечивающими перемещение моста крана.

В существующей научно-технической литературе рассмотрены математические модели электропривода перемещения мостового крана, выполненные с различными допущениями. Так, в работе [3], рассматриваются основные закономерности нагружения металлоконструкции и ходовых колес крана. Четырехколесный мостовой кран с двухдвигательным приводом представлен в виде одномассовой системы, в кото-

Рис. 2. Кинематическая схема механизма передвижения мостового крана с индивидуальным приводом: 1 – приводное колесо; 3 – тормоза; 2 – редукторы; 4 – электродвигатели

рой учитываются жесткости моста при действии на него в точках установки колес поперечной силы, упругое скольжение колес, взаимодействие реборд колес с рельсами, углы установочного перекоса отдельных колес. Однако, при этом не учитывается многомассовая система крана с четырехдвигательным электроприводом перемещения моста с упругостями приводных валов, упругостями главной и концевых балок крана.

В статье [5] определены параметры траектории движения многоколесных ходовых тележек кранов, цилиндрические колеса которых в горизонтальной плоскости установлены друг относительно друга под некоторыми (достаточно малыми) углами. При построении модели учитывалось упругое продольное и поперечное скольжение колес. Рассмотрена кинематика свободного движения многоколесных кранов, колеса которых установлены с взаимными перекосами в горизонтальной плоскости, и получены математические зависимости, позволяющие определять параметры траектории движения крана. При этом в электроприводе перемещения крана не учитываются: упругости приводных валов, упругости главной и концевых балок крана, взаимодействие реборд колес крана с головками рельса.

В статье [6] на основе анализа функционирования динамической модели крана приводятся результаты исследования боковых сил, возникающих при движении восьмиколесного крана, имеющего четыре балансира, и учитывается влияние перекосов осей балансиров на значения боковых сил. Восьмиколесный кран с двухдвигательным приводом представлен в виде одномассовой динамической модели. При составлении модели крана учитывалась жесткость моста крана и подкрановых путей в направлении действия боковых сил, наезд реборд каждого колеса на головку рельса, упругое проскальзывание ходовых колес крана. В статье [7] приведены результаты анализа работы привода передвижения мостового крана в период пуска с учетом трения качения колеса по рельсу. Предлагается аналитическая зависимость для определения коэффициента трения качения с учетом общепринятых механических характеристик материала, геометрических параметров колеса и рельса, времени разгона крана и характеристики сцепления колес с рельсом. Авторами установлено, что время разгона крана и коэффициент сцепления колес с рельсами зависят как от типа конструкции механизма передвижения, так и от диаметра ходовых колес. Согласно расчета по предложенной авторами методике, зависимость между диаметром колеса и временем пуска механизма является нелинейной.

Проведенный анализ перечисленных научно-технических работ показал, что существующие в настоящее время математические модели электропривода перемещения мостового крана предназначены либо для расчета возникающих максимальных усилий и напряжений в металлоконструкциях [6, 7] без возможностей исследовать динамику, либо рассматривают динамику движения крана упрощенно [3–5]: без упругостей приводных валов, упругостей главной и концевых балок, углов установочного перекоса колес, взаимодействия всех ведущих колес с рельсами с учетом реборд. Как следствие, в последнем случае нет возможности исследовать возникающие колебания элементов крана. Для исследования движения крана, при котором учитываются колебания в четырехдвигательном мостовом кране (что важно для настройки взаимосвязанной системы управления краном), необходима уточненная математическая модель, учитывающая перечисленные факторы: упругости и изгибы элементов крана, динамику взаимодействия всех ведущих колес с рельсами с учетом реборд.

Целью статьи является разработка уточненных математической и имитационной моделей движения в горизонтальной плоскости мостового крана с четырехдвигательным электроприводом перемещения, учитывающих упругости приводных валов, упругости главной и концевых балок, углы установочного перекоса колес, динамику взаимодействия цилиндрических двухребордных колес с рельсами.

Математическая модель электропривода перемещения крана при прямолинейном движении ходовых колес

При построении модели приняты следующие допущения: тележка неподвижна и находится в центре моста, распределенные массы представлены в виде сосредоточенных масс, проскальзывание между колесом и рельсом отсутствует, подъемные канаты приняты абсолютно жесткими, упрощенно учитывается сопротивление вязкого трения, колеса, рельсы и подкрановый рельсовый путь принимаются абсолютно жесткими.

Рассматривается случай, когда четырехколесный мостовой кран (с раздельным приводом на цилиндрических ходовых колесах, установленных в направлении идеального рельсового пути, с тележкой в середине пролета) движется прямолинейно. Такое движение (без касания реборд с рельсами) возникает на практике достаточно часто, хотя может быть не продолжительным.

Силы, действующие на кран, массы и упругости его отдельных частей показаны на рис. 3.

На рис. 3. приняты следующие обозначения: P_i – движущие или тормозные силы, развиваемые і-ым колесом, i = 1, 2, 3, 4 – номер колеса; W_i – силы сопротивления передвижению соответствующим колесам крана; F_i - силы упругости между колесами крана и соответствующими валами двигателей; F_{13}, F_{24} силы упругости на изгиб соответственно для правой и левой концевой балок крана; T_x, T_y - горизонтальные составляющие по оси «х» и «у» сил натяжения подъемных канатов; R_i- поперечные реакции рельсов, действующие на колеса; с_i – коэффициент жесткости приводных валов, соединяющих колеса крана и соответствующие двигатели; c_{13}, c_{24} – коэффициенты жесткости соответственно правой и левой концевых балок крана; с - коэффициент жесткости моста при действии на него в точках установки колес поперечной силы; *т*_{*T*} – масса средних частей моста вместе с грузовой тележкой; m_{k1}, m_{k2} – приведенные массы к точкам А и В соответственно для правой и левой концевых балок моста; *т*_{прі} – приведенные к поступательному движению крана в направлении оси «у» моменты инерции вращающихся частей механизмов соответствующих колес; то приведенные к сосредоточенным массы половины концевых балок моста (вместе с колесами, редукторами и двигателями); *т*_{гр} – масса груза; 1 – половина пролета крана; а – половина базы крана; y_i – перемещения центров колес в направлении оси «у»; y_{k1}, y_{k2} -перемещения правой и левой концевых балок крана в направлении оси «у»; ут - перемещение средней части моста в направлении оси «у»; x_{кр} – движение крана по оси «х»; x_{rp}, y_{rp} – перемещение груза в направлении оси «х» и «у»; Ф – угол изгиба моста в горизонтальной плоскости; *m*_{кр} – приведенная к сосредоточенной масса средней части моста (с грузовой тележкой, грузом и приведенной массой половины концевых балок моста); *x_i* – поперечные смещения центров соответствующих колес (отсчитываемые от средней линии рельса в направлении оси «х»).

В соответствии с рис. 3 составлена система уравнений, описывающая движение крана вдоль оси «у» с учетом упругостей, которая согласно классическим законам механики, имеет вид:

$$m_{\mathrm{np}i} \ddot{y}_{i} = (P_{i} - W_{i}) \cos(\varphi + \beta_{i} - \alpha) - F_{i},$$

$$m_{\kappa 1} \ddot{y}_{\kappa 1} = F_{1} + F_{3} - F_{13},$$

$$m_{T} \ddot{y}_{T} = F_{13} + F_{24} - T_{y},$$

$$m_{\kappa 2} \ddot{y}_{\kappa 2} = F_{2} + F_{4} - F_{24},$$

$$m_{\mathrm{rp}} \ddot{y}_{\mathrm{rp}} = -T_{y},$$

$$\alpha = \arcsin\frac{(y_{\kappa 1} - y_{\kappa 2})}{2 \cdot l},$$

$$T_{y} = T_{ay}(1 - \cos \omega t),$$

$$T_{ay} = \frac{(-F_{24} - F_{13})m_{\mathrm{rp}}}{m_{\mathrm{\kappa p}} + m_{\mathrm{rp}}},$$

$$\omega = \sqrt{\frac{(m_{\mathrm{\kappa p}} + m_{\mathrm{rp}})g}{m_{\mathrm{\kappa p}} \cdot H}},$$
(1)

где α — угол поворота моста в горизонтальной плоскости; $T_{\rm ay}$ — амплитуда колебаний усилий, действующих на груз в направлении оси «у» [3]; ω — частота собственных маятниковых колебаний груза [3]; g ускорение свободного падения; H — длина троса, равная расстоянию между осью барабана и центром массы груза.

В разрабатываемой модели рассматриваются нерегулируемые индивидуальные приводы перемещения колес крана. В этом случае при работе двигателей на линейных участках механических характеристик создаваемые тяговые усилия определяются по формуле [3]:

a)

б)

Рис. 3. Динамическая система мостового крана: а) силы и перемещения, действующие по оси «у»; б) силы и перемещения, действующие по оси «х»

$$P_i = P_{0i} - B_i \cdot \dot{y}_i, \tag{2}$$

где P_{0i} – усилия, развиваемые двигателями при неподвижном роторе; $B_i = k_p^2 / (k_{\beta_i} \cdot r_i^2)$ – жесткости механических характеристик, приведенные к поступательной скорости колеса [8]; k_p – передаточное число редуктора; k_{β_i} – жесткости механических характеристик двигателей; \dot{y}_i – линейные скорости центров колес; r_i – радиус колеса. Представление нерегулируемого привода уравнением (2) позволяет описывать его работу на линейном участке механической характеристики при использовании любого типа электродвигателя: как постоянного тока, так и переменного тока.

Силы упругости, согласно закону Гука, определяются выражениями:

$$F_{1} = c_{1}(y_{1} - y_{\kappa 1}),$$

$$F_{2} = c_{2}(y_{2} - y_{\kappa 2}),$$

$$F_{3} = c_{3}(y_{3} - y_{\kappa 1}),$$

$$F_{4} = c_{4}(y_{4} - y_{\kappa 2}),$$

$$F_{13} = c_{13}(y_{\kappa 1} - y_{T}),$$

$$F_{24} = c_{24}(y_{\kappa 2} - y_{T})$$
(3)

При движении по оси «х» возникают силы, действующие на ходовые колеса по оси «х» со стороны рельса R_i , упругие силы $F_{\kappa i}$ и силы, вызванные колебаниями груза T_x . Опишем силы R_i (определяемые без учета проскальзывания) уравнениями [3]:

$$R_i = (P_i - W_1)\sin(\varphi + \beta_i - \alpha), \tag{4}$$

где β_i – углы установочного перекоса ходовых колес.

Движение центра моста крана по оси «х», согласно второму закону Ньютона, описывается уравнением:

$$m_{\rm kp}\ddot{x}_{\rm kp} = \left(\sum F_{\kappa i}\right) - T_x.$$
 (5)

Движение по оси «х» тележки и моста крана приводит к возникновению колебаний груза в направлении оси «х». Данное движение описывается уравнениями [3]:

$$m_{\rm rp} \ddot{x}_{\rm rp} = -T_x,$$

$$T_x = T_{\rm ax} (1 - \cos \omega t),$$

$$T_{ax} = \frac{\left(\sum_{i=1}^4 F_{\kappa i}\right) m_{\rm rp}}{m_{\rm \kappa p} + m_{\rm rp}} \bigg\},$$
(6)

где T_{ax} – амплитуда колебаний усилий, действующих на груз в направлении оси «х».

Между ходовыми колесами и главной балкой крана в направлении «х» действуют через концевые балки упругие силы $F_{\rm ki}$. Если соответствующие колеса получат поперечные смещения, отсчитываемые от средней линии рельса x_1, x_2, x_3 и x_4 , то эти силы, согласно закону Гука и рис. 3, будут рассчитываться в виде:

$$F_{\kappa 1} = -c(x_{\kappa p} + x_{\phi 1} - x_{1}),$$

$$F_{\kappa 2} = c(x_{\kappa p} + x_{\phi 2} - x_{2}),$$

$$F_{\kappa 3} = -c(x_{\kappa p} + x_{\phi 3} - x_{3}),$$

$$F_{\kappa 4} = c(x_{\kappa p} + x_{\phi 4} - x_{4})$$
(7)

где $x_{\phi i}$ – смещения концевых балок от вертикальной оси (рис. 4), определяемые из выражений:

$$x_{\varphi 1} = -(l - l\cos\varphi) - a\sin\varphi,$$

$$x_{\varphi 2} = (l - l\cos\varphi) - a\sin\varphi,$$

$$x_{\varphi 3} = -(l - l\cos\varphi) + a\sin\varphi,$$

$$x_{\varphi 4} = (l - l\cos\varphi) + a\sin\varphi$$
(8)

Система уравнений (8) получена, согласно рис. 4 и исходя из геометрии перемещений точек крепления колес моста крана.

Поперечные смещения каждого колеса находятся из соотношений:

$$m_{\tilde{6}i}\ddot{x}_i = F_{\kappa i} - R_i. \tag{9}$$

При прямолинейном равномерном движении реакции R_i рельсов, действующие на колеса, равны силам $F_{\kappa i}$, действующим на колеса со стороны моста. Вращение моста крана в горизонтальной плоскости, согласно рис. 3 и второго закону Ньютона для вращательного движения, описывается уравнением:

$$J_0\ddot{\varphi} = (F_{13} - F_{24})l + (F_{\kappa 1} + F_{\kappa 2} - F_{\kappa 3} - F_{\kappa 4})a,$$
(10)

где J₀ – момент инерции моста крана при вращении в горизонтальной плоскости вокруг центра масс.

Полная математическая модель, характеризующая движение крана вдоль осей «х» и «у» при отсутствии касания реборд колес рельсов, описывается совокупностью уравнений: (1), (2), (5), (6), (7), (9) и (10).

Математическая модель электропривода перемещения крана с учетом контакта реборд ходовых колес с рельсами

В реальных условиях нарушается равенство между тяговыми усилиями приводных колес и силами сопротивления соответствующих сторон крана, что приводит к нарушению прямолинейного движения. При этом возникают силы перекоса и поперечные реакции рельсового пути, действующие на ходовые колеса, что приводит к появлению вращательного и поперечного движений крана в пределах зазоров между

Рис. 4. Смещения концевых балок $x_{\phi i}$ от вертикальной оси

ребордами и головками рельсов, к различным поперечным смещениям отдельных колес [3].

При соприкосновении реборд колес с рельсами возникают дополнительные силы N_i , действующие со стороны рельсов по оси «х» на реборды колес, и дополнительные силы сопротивления ΔW_i передвижению колес по оси «у». Эти силы возникают между продольными осями рельса и колеса при касании рельса ребордой под углом, не равным нулю.

Контактная сила N_i между ребордой и рельсом, действующая на колесо в горизонтальной плоскости, определяется как разность сил, действующих на колеса в поперечном направлении [3]:

$$N_i = F_{\kappa i} - R_i. \tag{11}$$

Условием контакта реборды с рельсом является неравенство: $N_i \neq 0$.

Дополнительные силы сопротивления передвижению колес, согласно [3], описываются выражением:

$$\Delta W_i = N_i \cdot f_{\rm Tp},\tag{12}$$

где $f_{\rm TP}$ – коэффициент трения скольжения.

При этом реборды колес вступят в контакт с рельсами при следующем условии для поперечных смещений [3]:

$$\begin{array}{l} x_i \ge \delta_{\Theta i1}, \\ x_i \le \delta_{\Theta i2} \end{array} \right\},$$
 (13)

где $\delta_{\Theta i1}, \delta_{\Theta i2}$ - минимальные расстояния между рельсом и соответственно правыми и левыми ребордами колес.

Значения расстояний $\delta_{\Theta i1}$ и $\delta_{\Theta i2}$ вычисляется по формулам [3]:

$$\delta_{\Theta i1} = \delta_{i1} - |e_i \cdot tg(\beta_i + \varphi + \alpha)|,$$

$$\delta_{\Theta i2} = -(\delta_{i2} - |e_i \cdot tg(\beta_i + \varphi + \alpha)|),$$

$$e_i = r / tg\gamma \cdot |\sin(\beta_i + \varphi + \alpha)|$$
(14)

где δ_{i1}, δ_{i2} – расстояния между точками контакта колес с рельсами и соответственно правыми и левыми ребордами; e_i – расстояния от точки контакта реборд с рельсом до вертикальной оси колеса; γ – угол уклона реборды.

Полагаем, что если при движении крана по оси «х» происходит контакт реборды с рельсом, то движение колеса в этом направлении прекращается ($\Delta x_i = 0$). Данное условие описывается следующими математическими выражениями:

$$x_{i} = \begin{cases} \frac{1}{m_{i6}} \int_{0}^{t} \int_{0}^{t} (F_{\kappa i} - R_{i}) dt dt, \text{если} \delta_{\Theta i 2} \leq x_{i} \leq \delta_{\Theta i 1}, \\ \delta_{\Theta i 1}, \text{если} x_{i} \geq \delta_{\Theta i 1}, \\ \delta_{\Theta i 2}, \text{если} x_{i} \leq \delta_{\Theta i 2}. \end{cases}$$
(15)

Дополнительные силы N_i возникают при взаимодействии реборд с рельсами и, согласно уравнению (11), описываются зависимостями:

$$N_{i} = \begin{cases} 0, \text{если } \delta_{\Theta i2} \leq x_{i} \leq \delta_{\Theta i1}, \\ |F_{\kappa i} - R_{i}|, \text{если } x_{i} \geq \delta_{\Theta i1} \text{ или } x_{i} \leq \delta_{\Theta i2}. \end{cases}$$
(16)

С учетом вышеупомянутого общая математическая модель, характеризующая собой движение крана при контакте реборд колес с рельсами, описывается совокупностью уравнений: (1), (2), (5), (6), (7), (9), (10), (12), (13), (15) и (16). При этом первое уравнение системы (1) преобразовано к виду:

$$m_{\Pi p i} \ddot{y}_i = (P_i - W_i - \Delta W_i) \cos(\varphi + \beta_i - \alpha) - F_i.$$
 (17)

Имитационная модель и результаты моделирования. На основании разработанных математических моделей созданы имитационные модели электропривода перемешения мостового крана в системе MATLAB с использованием пакета инструментов Simulink [9], приведенные на рис. 5. В данных моделях индивидуальные приводы перемещения колес крана представлены блоками: dvigatel 1 – dvigatel 4. Движение сосредоточенных масс крана реализовано следующими блоками: move mpr1 - move mpr4, которые моделируют движения колес крана в направлении оси «у». Блоки: move mk1 и move mk2 моделируют движения в точках А и В соответственно правой и левой концевых балок моста. Блок: move mt моделирует движение массы средних частей моста (вместе с грузовой тележкой). Блоки move_mgry и move_mgrx моделируют движение массы груза в направлении осей «х» и «у» (рис. 5, а). Расчет сил упругости, действующих на колеса со стороны моста, выполняется в блоке: rashet_Fki, угла изгиба моста в горизонтальной плоскости - в блоке: rashet_fi, реакции рельсов, действующих на колеса, - в блоке: rashet_Ri, дополнительных сил сопротивления передвижения колес - в блоке: rashet deltaWi, поперечных смещений колес - в блоке: rashet_Xi (рис. 5, б).

При последующих расчетах на данной имитационной были заданы следующие параметры реального мостового электрического крана (грузоподъемностью 20/5т) для тяжелого режима работы: $m_{\rm Tp1} = m_{\rm Tp2} = m_{\rm Tp3} = m_{\rm Tp4} = 1470$ кг; $m_{\rm K1} = m_{\rm K2} = 7100$ кг; $m_{\rm T} = 32700$ кг; $m_{\rm Kp} = 47200$ кг; $m_{\rm Tp} = 15000$ кг; $m_{\rm fp} = 15000$ кг; $m_{\rm f1} = m_{62} = m_{63} = m_{64} = 3625$ кг; $c_1 = c_2 = c_3 = c_4 = 6,9 \cdot 10^6$ H/M; $c_{13} = c_{24} = 6,9 \cdot 10^8$ H/M; $J_0 = 2,21 \cdot 10^6$ кгм²; l = 14,25 м; a = 2,5 м; c = 24500 H/м; $P_{01} = P_{02} = P_{03} = P_{04} = 60000$ H; $B_1 = B_2 = B_3 = B_4 = 30000$ Hcм⁻¹; $f_{\rm Tp} = 0,018$; r = 0,35 м; $\gamma = 0,035$ рад; $W_1 = W_2 = W_3 = W_4 = 1010$ H; g = 9,8 м/c²; H=10м; $\delta_{11} = \delta_{12} = 0,002$ м; $\delta_{21} = \delta_{22} = 0,003$ м; $\delta_{31} = \delta_{32} = 0,004$ м;

 $\delta_{41} = \delta_{42} = 0,005$ м; $\beta_1 = \beta_4 = 0,001$ рад; $\beta_2 = \beta_3 = -0,001$ рад.

Для проверки работоспособности модели крана расчеты на модели выполнялись для трех вариантов: 1) без учета упругостей (т.е. при $c_1 = c_2 = c_3 = c_4 =$ $= c_{13} = c_{24} = \infty$), но с установочным перекосом колес (рис. 6); 2) с учетом упругостей (рис. 7), но без установочного перекоса колес (т. е. при $\beta_1 = \beta_2 = \beta_3 =$ $= \beta_4 = 0$); 3) с учетом упругостей и установочным перекосом колес (рис. 8). На рис. 6, а, рис. 7, а и рис. 8, а для демонстрации возникающих колебаний при задании упругости звеньев механизма перемещения крана показан переходный процесс изменения электромагнитного момента для одного двигателя (в первые 2 секунды). На рис. 6, б, рис. 7, б и рис. 8, б для того же интервала времени показаны переходные процессы изменения линейной скорости первого колеса.

Из анализа рис. 6 следует, что при отсутствии упругостей, но при наличии установочного перекоса колес, отсутствуют колебания электромагнитного момента двигателя и колебания линейной скорости колеса (рис. 6 а, б), но возникает изменение угла изгиба моста в горизонтальной плоскости (рис. 6, в), происходит движение крана по оси «х» (рис. 6, г) и поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х» (рис. 6, д).

Наличие упругостей, даже при отсутствии перекоса колес, вызывает колебания электромагнитного момента двигателя и линейной скорости колеса (рис. 7 а, б). Но при этом не происходят: изгиб моста в горизонтальной плоскости (рис. 7, в), движение крана по оси «х» (рис. 7, г), поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х» (рис. 7, д).

При учете упругостей и установочного перекоса колес наблюдаются: как колебания электромагнитного момента двигателя и линейной скорости колеса (рис. 8 а, б), так и изгиб моста в горизонтальной плоскости (рис. 8, в), а также движение крана по оси «х» (рис. 8, г) и поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х» (рис. 8, д). Во всех рассмотренных случаях происходит равномерное движение по оси «у» всех колес (рис. 6, е, рис. 7, е и рис. 8, е).

Выводы: 1. Разработанные математическая и имитационная (в пакете Matlab) модели движения в горизонтальной плоскости четырехдвигательного электропривода перемещения мостового крана учитывают: упругости приводных валов, главной и концевых балок, углы установочного перекоса колес, взаимодействие четырех цилиндрических двухребордных колес с рельсами.

2. Данные математическая и имитационная модели, предназначенные для исследования движения в горизонтальной плоскости четырехдвигательного электропривода перемещения мостового крана, отображают динамику движения реального крана с отклонениями расчетных значений периодов колебаний электромагнитных моментов двигателей и скоростей колес от экспериментальных менее, чем на (10–15) %.

б)

Рис. 5. Имитационная модель электропривода перемещения мостового крана в пакете Simulink: а – модель движения сосредоточенных масс крана; б – модель сил, возникающих в кране

Рис. 6. Результаты моделирования движения крана без учета упругостей, но с учетом установочного перекоса колес: а – электромагнитный момент двигателя на первом колесе; б – линейная скорость первого колеса; в – угол изгиба моста в горизонтальной плоскости; г – движение крана по оси «х»; д – поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х»; е – перемещение центров колес в направлении оси «у»

Рис. 7. Результаты моделирования движения крана с учетом упругостей, но без установочного перекоса колес: а – электромагнитный момент двигателя на первом колесе; б – линейная скорость первого колеса; в – угол изгиба моста в горизонтальной плоскости; г – движение крана по оси «х»; д – поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х»; е – перемещение центров колес в направлении оси «у»

Рис. 8. Результаты моделирования движения крана с учетом упругостей, с установочным перекосом колес: а – электромагнитный момент двигателя на первом колесе; б – линейная скорость первого колеса; в – угол изгиба моста в горизонтальной плоскости; г – движение крана по оси «х»; д – поперечные смещения центров соответствующих колес от средней линии рельса в направлении оси «х»; е – перемещение центров колес в направлении оси «у»

Перечень ссылок

- Орловский И. А., Бут Ю. С. Минимизация потерь энергии генетическими алгоритмами во взаимосвязанном асинхронном приводе перемещения крана // Вісник Кременчуцького державного політехнічного ун-та ім. М. Остроградського. – Ч.1. – Кременчук, 2007. – Вип. 3 (44). – С. 95–99.
- Невзоров Л. А. Устройство и эксплуатация грузоподъемных кранов: Учебник / Л. А Невзоров, Ю. И. Гудков, М. Д. Полосин. – 2-е изд., стер. – М.: Академия, 2002. – 448 с.
- Лобов Н. А. Динамика грузоподъемных кранов. М.: Машиностроение, 1987. – 160 с.
- Лобов Н.А. Разработка основ динамики передвижения кранов по рельсовому пути и методов повышения ресурса работы крановой системы [Электронный ресурс]: дис. ... д-ра техн. наук: 05.05.04.- М.: РГБ, 2007. – 294 с. (Из фондов Российской Государственной Библиотеки).

- Поликарпов Ю.В. Кинематика движения многоколесных ходовых тележек грузоподъемных кранов // Подъемно-транспортная техника. – 2005. – №1. – С. 88–95.
- Спицына Д. Н. Исследование боковых сил, действующих на многоколесные мостовые краны // Вестник машиностроения. – 2003. – №3. – С. 3–9.
- Бондаренко Л. Н., С. В. Ракша Параметры привода передвижения мостового крана в период пуска с учетом трения качения колеса по рельсу // Дніпропетровський національний ун-т залізничного транспорту ім. В.Лазаренка: Вісник наук.праць. Вип 10. – Дніпропетровськ, 2006. – С. 29–31.
- Справочник по автоматизированному электроприводу / Под ред. В. А. Елисеева и А. В. Шинянского. – М.:Энергоатомиздат.1983. – 616 с.
- Дьяконов В. П. MatLab 6.0/6.1/6.5+SP1+Simulink 4/5. Обработка сигналов и изображений. М.:СО-ЛОН – Пресс, 2005. – 592 с.

Поступила в редакцию 13.11.07 г.

Розроблено математичну та імітаційну моделі руху в горизонтальній площині чотирьохдвигунного електропривода переміщення мостового крана, що враховують: пружності приводних валів, головної і кінцевої балок, кути настановного перекосу коліс, взаємодію чотирьох циліндричних двухребордних коліс з рейками. Виконано дослідження руху даного крана за допомогою розробленої імітаційної моделі.

Mathematical and imitating models of movement in a horizontal plane of the four-impellent electric drive of the bridge crane moving are developed; the models take into account: elasticity of drive shafts, main and trailer beams, corners of an adjusting skew of wheels, interaction of four cylindrical double-flanged wheels with rails. Researches of the given crane movement with the help of the developed imitating model are executed.

УДК 621.316

В. П. Соколов

Устройство для контроля высоких значений постоянного напряжения

Рассмотрено устройство для контроля высоких значений постоянного напряжения и предложен расчет параметров данного устройства.

В процессе эксплуатации энергетического оборудования тяговых подстанций и подвижных транспортных средств (электрического железнодорожного транспорта, городского электрического транспорта и др.) проблемы контроля больших значений постоянных напряжений предопределяют разработку и производство устройств контроля эффективных по технико-экономическим показателям, безопасных по условиям электробезопасности для обслуживающего персонала.

Известные устройства для контроля больших значений постоянного напряжения представляют собой [1, 2]:

 измерительный прибор с последовательно включенным высокоомным резистором;

- омические делители напряжения;

 измерительные трансформаторы постоянного напряжения;

- устройства с датчиками Холла;

– шаровые разрядники и др.

Все указанные устройства имеют ограничения по применению из-за:

 – влияния дестабилизирующих факторов окружающей среды (температура, влага, запыленность);

повышенных вибрационных воздействий, снижающих механическую прочность устройства и изменяющих электротехнические параметры;

 – влияния индуктивности токопроводящих проводников;

 – сложность контроля и калибровки сопротивлений резисторов.